123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import json
- import numpy as np
- import time
- import tools.infer.utility as utility
- from tools.infer_kie_token_ser_re import make_input
- from ppocr.postprocess import build_post_process
- from ppocr.utils.logging import get_logger
- from ppocr.utils.visual import draw_ser_results, draw_re_results
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppstructure.utility import parse_args
- from ppstructure.kie.predict_kie_token_ser import SerPredictor
- logger = get_logger()
- class SerRePredictor(object):
- def __init__(self, args):
- self.use_visual_backbone = args.use_visual_backbone
- self.ser_engine = SerPredictor(args)
- if args.re_model_dir is not None:
- postprocess_params = {'name': 'VQAReTokenLayoutLMPostProcess'}
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
- utility.create_predictor(args, 're', logger)
- else:
- self.predictor = None
- def __call__(self, img):
- starttime = time.time()
- ser_results, ser_inputs, ser_elapse = self.ser_engine(img)
- if self.predictor is None:
- return ser_results, ser_elapse
- re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results)
- if self.use_visual_backbone == False:
- re_input.pop(4)
- for idx in range(len(self.input_tensor)):
- self.input_tensor[idx].copy_from_cpu(re_input[idx])
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- preds = dict(
- loss=outputs[1],
- pred_relations=outputs[2],
- hidden_states=outputs[0], )
- post_result = self.postprocess_op(
- preds,
- ser_results=ser_results,
- entity_idx_dict_batch=entity_idx_dict_batch)
- elapse = time.time() - starttime
- return post_result, elapse
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- ser_re_predictor = SerRePredictor(args)
- count = 0
- total_time = 0
- os.makedirs(args.output, exist_ok=True)
- with open(
- os.path.join(args.output, 'infer.txt'), mode='w',
- encoding='utf-8') as f_w:
- for image_file in image_file_list:
- img, flag, _ = check_and_read(image_file)
- if not flag:
- img = cv2.imread(image_file)
- img = img[:, :, ::-1]
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- re_res, elapse = ser_re_predictor(img)
- re_res = re_res[0]
- res_str = '{}\t{}\n'.format(
- image_file,
- json.dumps(
- {
- "ocr_info": re_res,
- }, ensure_ascii=False))
- f_w.write(res_str)
- if ser_re_predictor.predictor is not None:
- img_res = draw_re_results(
- image_file, re_res, font_path=args.vis_font_path)
- img_save_path = os.path.join(
- args.output,
- os.path.splitext(os.path.basename(image_file))[0] +
- "_ser_re.jpg")
- else:
- img_res = draw_ser_results(
- image_file, re_res, font_path=args.vis_font_path)
- img_save_path = os.path.join(
- args.output,
- os.path.splitext(os.path.basename(image_file))[0] +
- "_ser.jpg")
- cv2.imwrite(img_save_path, img_res)
- logger.info("save vis result to {}".format(img_save_path))
- if count > 0:
- total_time += elapse
- count += 1
- logger.info("Predict time of {}: {}".format(image_file, elapse))
- if __name__ == "__main__":
- main(parse_args())
|