123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import errno
- import os
- import pickle
- import six
- import paddle
- from ppocr.utils.logging import get_logger
- __all__ = ['load_model']
- def _mkdir_if_not_exist(path, logger):
- """
- mkdir if not exists, ignore the exception when multiprocess mkdir together
- """
- if not os.path.exists(path):
- try:
- os.makedirs(path)
- except OSError as e:
- if e.errno == errno.EEXIST and os.path.isdir(path):
- logger.warning(
- 'be happy if some process has already created {}'.format(
- path))
- else:
- raise OSError('Failed to mkdir {}'.format(path))
- def load_model(config, model, optimizer=None, model_type='det'):
- """
- load model from checkpoint or pretrained_model
- """
- logger = get_logger()
- global_config = config['Global']
- checkpoints = global_config.get('checkpoints')
- pretrained_model = global_config.get('pretrained_model')
- best_model_dict = {}
- is_float16 = False
- is_nlp_model = model_type == 'kie' and config["Architecture"][
- "algorithm"] not in ["SDMGR"]
- if is_nlp_model is True:
- # NOTE: for kie model dsitillation, resume training is not supported now
- if config["Architecture"]["algorithm"] in ["Distillation"]:
- return best_model_dict
- checkpoints = config['Architecture']['Backbone']['checkpoints']
- # load kie method metric
- if checkpoints:
- if os.path.exists(os.path.join(checkpoints, 'metric.states')):
- with open(os.path.join(checkpoints, 'metric.states'),
- 'rb') as f:
- states_dict = pickle.load(f) if six.PY2 else pickle.load(
- f, encoding='latin1')
- best_model_dict = states_dict.get('best_model_dict', {})
- if 'epoch' in states_dict:
- best_model_dict['start_epoch'] = states_dict['epoch'] + 1
- logger.info("resume from {}".format(checkpoints))
- if optimizer is not None:
- if checkpoints[-1] in ['/', '\\']:
- checkpoints = checkpoints[:-1]
- if os.path.exists(checkpoints + '.pdopt'):
- optim_dict = paddle.load(checkpoints + '.pdopt')
- optimizer.set_state_dict(optim_dict)
- else:
- logger.warning(
- "{}.pdopt is not exists, params of optimizer is not loaded".
- format(checkpoints))
- return best_model_dict
- if checkpoints:
- if checkpoints.endswith('.pdparams'):
- checkpoints = checkpoints.replace('.pdparams', '')
- assert os.path.exists(checkpoints + ".pdparams"), \
- "The {}.pdparams does not exists!".format(checkpoints)
- # load params from trained model
- params = paddle.load(checkpoints + '.pdparams')
- state_dict = model.state_dict()
- new_state_dict = {}
- for key, value in state_dict.items():
- if key not in params:
- logger.warning("{} not in loaded params {} !".format(
- key, params.keys()))
- continue
- pre_value = params[key]
- if pre_value.dtype == paddle.float16:
- is_float16 = True
- if pre_value.dtype != value.dtype:
- pre_value = pre_value.astype(value.dtype)
- if list(value.shape) == list(pre_value.shape):
- new_state_dict[key] = pre_value
- else:
- logger.warning(
- "The shape of model params {} {} not matched with loaded params shape {} !".
- format(key, value.shape, pre_value.shape))
- model.set_state_dict(new_state_dict)
- if is_float16:
- logger.info(
- "The parameter type is float16, which is converted to float32 when loading"
- )
- if optimizer is not None:
- if os.path.exists(checkpoints + '.pdopt'):
- optim_dict = paddle.load(checkpoints + '.pdopt')
- optimizer.set_state_dict(optim_dict)
- else:
- logger.warning(
- "{}.pdopt is not exists, params of optimizer is not loaded".
- format(checkpoints))
- if os.path.exists(checkpoints + '.states'):
- with open(checkpoints + '.states', 'rb') as f:
- states_dict = pickle.load(f) if six.PY2 else pickle.load(
- f, encoding='latin1')
- best_model_dict = states_dict.get('best_model_dict', {})
- if 'epoch' in states_dict:
- best_model_dict['start_epoch'] = states_dict['epoch'] + 1
- logger.info("resume from {}".format(checkpoints))
- elif pretrained_model:
- is_float16 = load_pretrained_params(model, pretrained_model)
- else:
- logger.info('train from scratch')
- best_model_dict['is_float16'] = is_float16
- return best_model_dict
- def load_pretrained_params(model, path):
- logger = get_logger()
- if path.endswith('.pdparams'):
- path = path.replace('.pdparams', '')
- assert os.path.exists(path + ".pdparams"), \
- "The {}.pdparams does not exists!".format(path)
- params = paddle.load(path + '.pdparams')
- state_dict = model.state_dict()
- new_state_dict = {}
- is_float16 = False
- for k1 in params.keys():
- if k1 not in state_dict.keys():
- logger.warning("The pretrained params {} not in model".format(k1))
- else:
- if params[k1].dtype == paddle.float16:
- is_float16 = True
- if params[k1].dtype != state_dict[k1].dtype:
- params[k1] = params[k1].astype(state_dict[k1].dtype)
- if list(state_dict[k1].shape) == list(params[k1].shape):
- new_state_dict[k1] = params[k1]
- else:
- logger.warning(
- "The shape of model params {} {} not matched with loaded params {} {} !".
- format(k1, state_dict[k1].shape, k1, params[k1].shape))
- model.set_state_dict(new_state_dict)
- if is_float16:
- logger.info(
- "The parameter type is float16, which is converted to float32 when loading"
- )
- logger.info("load pretrain successful from {}".format(path))
- return is_float16
- def save_model(model,
- optimizer,
- model_path,
- logger,
- config,
- is_best=False,
- prefix='ppocr',
- **kwargs):
- """
- save model to the target path
- """
- _mkdir_if_not_exist(model_path, logger)
- model_prefix = os.path.join(model_path, prefix)
- paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
- is_nlp_model = config['Architecture']["model_type"] == 'kie' and config[
- "Architecture"]["algorithm"] not in ["SDMGR"]
- if is_nlp_model is not True:
- paddle.save(model.state_dict(), model_prefix + '.pdparams')
- metric_prefix = model_prefix
- else: # for kie system, we follow the save/load rules in NLP
- if config['Global']['distributed']:
- arch = model._layers
- else:
- arch = model
- if config["Architecture"]["algorithm"] in ["Distillation"]:
- arch = arch.Student
- arch.backbone.model.save_pretrained(model_prefix)
- metric_prefix = os.path.join(model_prefix, 'metric')
- # save metric and config
- with open(metric_prefix + '.states', 'wb') as f:
- pickle.dump(kwargs, f, protocol=2)
- if is_best:
- logger.info('save best model is to {}'.format(model_prefix))
- else:
- logger.info("save model in {}".format(model_prefix))
|