123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import cv2
- import time
- def resize_image(im, max_side_len=512):
- """
- resize image to a size multiple of max_stride which is required by the network
- :param im: the resized image
- :param max_side_len: limit of max image size to avoid out of memory in gpu
- :return: the resized image and the resize ratio
- """
- h, w, _ = im.shape
- resize_w = w
- resize_h = h
- if resize_h > resize_w:
- ratio = float(max_side_len) / resize_h
- else:
- ratio = float(max_side_len) / resize_w
- resize_h = int(resize_h * ratio)
- resize_w = int(resize_w * ratio)
- max_stride = 128
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
- im = cv2.resize(im, (int(resize_w), int(resize_h)))
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- return im, (ratio_h, ratio_w)
- def resize_image_min(im, max_side_len=512):
- """
- """
- h, w, _ = im.shape
- resize_w = w
- resize_h = h
- if resize_h < resize_w:
- ratio = float(max_side_len) / resize_h
- else:
- ratio = float(max_side_len) / resize_w
- resize_h = int(resize_h * ratio)
- resize_w = int(resize_w * ratio)
- max_stride = 128
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
- im = cv2.resize(im, (int(resize_w), int(resize_h)))
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- return im, (ratio_h, ratio_w)
- def resize_image_for_totaltext(im, max_side_len=512):
- """
- """
- h, w, _ = im.shape
- resize_w = w
- resize_h = h
- ratio = 1.25
- if h * ratio > max_side_len:
- ratio = float(max_side_len) / resize_h
- resize_h = int(resize_h * ratio)
- resize_w = int(resize_w * ratio)
- max_stride = 128
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
- im = cv2.resize(im, (int(resize_w), int(resize_h)))
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- return im, (ratio_h, ratio_w)
- def point_pair2poly(point_pair_list):
- """
- Transfer vertical point_pairs into poly point in clockwise.
- """
- pair_length_list = []
- for point_pair in point_pair_list:
- pair_length = np.linalg.norm(point_pair[0] - point_pair[1])
- pair_length_list.append(pair_length)
- pair_length_list = np.array(pair_length_list)
- pair_info = (pair_length_list.max(), pair_length_list.min(),
- pair_length_list.mean())
- point_num = len(point_pair_list) * 2
- point_list = [0] * point_num
- for idx, point_pair in enumerate(point_pair_list):
- point_list[idx] = point_pair[0]
- point_list[point_num - 1 - idx] = point_pair[1]
- return np.array(point_list).reshape(-1, 2), pair_info
- def shrink_quad_along_width(quad, begin_width_ratio=0., end_width_ratio=1.):
- """
- Generate shrink_quad_along_width.
- """
- ratio_pair = np.array(
- [[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
- p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
- p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
- return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
- def expand_poly_along_width(poly, shrink_ratio_of_width=0.3):
- """
- expand poly along width.
- """
- point_num = poly.shape[0]
- left_quad = np.array(
- [poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
- left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
- (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
- left_quad_expand = shrink_quad_along_width(left_quad, left_ratio, 1.0)
- right_quad = np.array(
- [
- poly[point_num // 2 - 2], poly[point_num // 2 - 1],
- poly[point_num // 2], poly[point_num // 2 + 1]
- ],
- dtype=np.float32)
- right_ratio = 1.0 + \
- shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
- (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
- right_quad_expand = shrink_quad_along_width(right_quad, 0.0, right_ratio)
- poly[0] = left_quad_expand[0]
- poly[-1] = left_quad_expand[-1]
- poly[point_num // 2 - 1] = right_quad_expand[1]
- poly[point_num // 2] = right_quad_expand[2]
- return poly
- def norm2(x, axis=None):
- if axis:
- return np.sqrt(np.sum(x**2, axis=axis))
- return np.sqrt(np.sum(x**2))
- def cos(p1, p2):
- return (p1 * p2).sum() / (norm2(p1) * norm2(p2))
|