123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
- from .rec_postprocess import AttnLabelDecode
- class TableLabelDecode(AttnLabelDecode):
- """ """
- def __init__(self,
- character_dict_path,
- merge_no_span_structure=False,
- **kwargs):
- dict_character = []
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip("\n").strip("\r\n")
- dict_character.append(line)
- if merge_no_span_structure:
- if "<td></td>" not in dict_character:
- dict_character.append("<td></td>")
- if "<td>" in dict_character:
- dict_character.remove("<td>")
- dict_character = self.add_special_char(dict_character)
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.character = dict_character
- self.td_token = ['<td>', '<td', '<td></td>']
- def __call__(self, preds, batch=None):
- structure_probs = preds['structure_probs']
- bbox_preds = preds['loc_preds']
- if isinstance(structure_probs, paddle.Tensor):
- structure_probs = structure_probs.numpy()
- if isinstance(bbox_preds, paddle.Tensor):
- bbox_preds = bbox_preds.numpy()
- shape_list = batch[-1]
- result = self.decode(structure_probs, bbox_preds, shape_list)
- if len(batch) == 1: # only contains shape
- return result
- label_decode_result = self.decode_label(batch)
- return result, label_decode_result
- def decode(self, structure_probs, bbox_preds, shape_list):
- """convert text-label into text-index.
- """
- ignored_tokens = self.get_ignored_tokens()
- end_idx = self.dict[self.end_str]
- structure_idx = structure_probs.argmax(axis=2)
- structure_probs = structure_probs.max(axis=2)
- structure_batch_list = []
- bbox_batch_list = []
- batch_size = len(structure_idx)
- for batch_idx in range(batch_size):
- structure_list = []
- bbox_list = []
- score_list = []
- for idx in range(len(structure_idx[batch_idx])):
- char_idx = int(structure_idx[batch_idx][idx])
- if idx > 0 and char_idx == end_idx:
- break
- if char_idx in ignored_tokens:
- continue
- text = self.character[char_idx]
- if text in self.td_token:
- bbox = bbox_preds[batch_idx, idx]
- bbox = self._bbox_decode(bbox, shape_list[batch_idx])
- bbox_list.append(bbox)
- structure_list.append(text)
- score_list.append(structure_probs[batch_idx, idx])
- structure_batch_list.append([structure_list, np.mean(score_list)])
- bbox_batch_list.append(np.array(bbox_list))
- result = {
- 'bbox_batch_list': bbox_batch_list,
- 'structure_batch_list': structure_batch_list,
- }
- return result
- def decode_label(self, batch):
- """convert text-label into text-index.
- """
- structure_idx = batch[1]
- gt_bbox_list = batch[2]
- shape_list = batch[-1]
- ignored_tokens = self.get_ignored_tokens()
- end_idx = self.dict[self.end_str]
- structure_batch_list = []
- bbox_batch_list = []
- batch_size = len(structure_idx)
- for batch_idx in range(batch_size):
- structure_list = []
- bbox_list = []
- for idx in range(len(structure_idx[batch_idx])):
- char_idx = int(structure_idx[batch_idx][idx])
- if idx > 0 and char_idx == end_idx:
- break
- if char_idx in ignored_tokens:
- continue
- structure_list.append(self.character[char_idx])
- bbox = gt_bbox_list[batch_idx][idx]
- if bbox.sum() != 0:
- bbox = self._bbox_decode(bbox, shape_list[batch_idx])
- bbox_list.append(bbox)
- structure_batch_list.append(structure_list)
- bbox_batch_list.append(bbox_list)
- result = {
- 'bbox_batch_list': bbox_batch_list,
- 'structure_batch_list': structure_batch_list,
- }
- return result
- def _bbox_decode(self, bbox, shape):
- h, w, ratio_h, ratio_w, pad_h, pad_w = shape
- bbox[0::2] *= w
- bbox[1::2] *= h
- return bbox
- class TableMasterLabelDecode(TableLabelDecode):
- """ """
- def __init__(self,
- character_dict_path,
- box_shape='ori',
- merge_no_span_structure=True,
- **kwargs):
- super(TableMasterLabelDecode, self).__init__(character_dict_path,
- merge_no_span_structure)
- self.box_shape = box_shape
- assert box_shape in [
- 'ori', 'pad'
- ], 'The shape used for box normalization must be ori or pad'
- def add_special_char(self, dict_character):
- self.beg_str = '<SOS>'
- self.end_str = '<EOS>'
- self.unknown_str = '<UKN>'
- self.pad_str = '<PAD>'
- dict_character = dict_character
- dict_character = dict_character + [
- self.unknown_str, self.beg_str, self.end_str, self.pad_str
- ]
- return dict_character
- def get_ignored_tokens(self):
- pad_idx = self.dict[self.pad_str]
- start_idx = self.dict[self.beg_str]
- end_idx = self.dict[self.end_str]
- unknown_idx = self.dict[self.unknown_str]
- return [start_idx, end_idx, pad_idx, unknown_idx]
- def _bbox_decode(self, bbox, shape):
- h, w, ratio_h, ratio_w, pad_h, pad_w = shape
- if self.box_shape == 'pad':
- h, w = pad_h, pad_w
- bbox[0::2] *= w
- bbox[1::2] *= h
- bbox[0::2] /= ratio_w
- bbox[1::2] /= ratio_h
- x, y, w, h = bbox
- x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2
- bbox = np.array([x1, y1, x2, y2])
- return bbox
|