123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refered from:
- https://github.com/shengtao96/CentripetalText/blob/main/test.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import os.path as osp
- import numpy as np
- import cv2
- import paddle
- import pyclipper
- class CTPostProcess(object):
- """
- The post process for Centripetal Text (CT).
- """
- def __init__(self, min_score=0.88, min_area=16, box_type='poly', **kwargs):
- self.min_score = min_score
- self.min_area = min_area
- self.box_type = box_type
- self.coord = np.zeros((2, 300, 300), dtype=np.int32)
- for i in range(300):
- for j in range(300):
- self.coord[0, i, j] = j
- self.coord[1, i, j] = i
- def __call__(self, preds, batch):
- outs = preds['maps']
- out_scores = preds['score']
- if isinstance(outs, paddle.Tensor):
- outs = outs.numpy()
- if isinstance(out_scores, paddle.Tensor):
- out_scores = out_scores.numpy()
- batch_size = outs.shape[0]
- boxes_batch = []
- for idx in range(batch_size):
- bboxes = []
- scores = []
- img_shape = batch[idx]
- org_img_size = img_shape[:3]
- img_shape = img_shape[3:]
- img_size = img_shape[:2]
- out = np.expand_dims(outs[idx], axis=0)
- outputs = dict()
- score = np.expand_dims(out_scores[idx], axis=0)
- kernel = out[:, 0, :, :] > 0.2
- loc = out[:, 1:, :, :].astype("float32")
- score = score[0].astype(np.float32)
- kernel = kernel[0].astype(np.uint8)
- loc = loc[0].astype(np.float32)
- label_num, label_kernel = cv2.connectedComponents(
- kernel, connectivity=4)
- for i in range(1, label_num):
- ind = (label_kernel == i)
- if ind.sum(
- ) < 10: # pixel number less than 10, treated as background
- label_kernel[ind] = 0
- label = np.zeros_like(label_kernel)
- h, w = label_kernel.shape
- pixels = self.coord[:, :h, :w].reshape(2, -1)
- points = pixels.transpose([1, 0]).astype(np.float32)
- off_points = (points + 10. / 4. * loc[:, pixels[1], pixels[0]].T
- ).astype(np.int32)
- off_points[:, 0] = np.clip(off_points[:, 0], 0, label.shape[1] - 1)
- off_points[:, 1] = np.clip(off_points[:, 1], 0, label.shape[0] - 1)
- label[pixels[1], pixels[0]] = label_kernel[off_points[:, 1],
- off_points[:, 0]]
- label[label_kernel > 0] = label_kernel[label_kernel > 0]
- score_pocket = [0.0]
- for i in range(1, label_num):
- ind = (label_kernel == i)
- if ind.sum() == 0:
- score_pocket.append(0.0)
- continue
- score_i = np.mean(score[ind])
- score_pocket.append(score_i)
- label_num = np.max(label) + 1
- label = cv2.resize(
- label, (img_size[1], img_size[0]),
- interpolation=cv2.INTER_NEAREST)
- scale = (float(org_img_size[1]) / float(img_size[1]),
- float(org_img_size[0]) / float(img_size[0]))
- for i in range(1, label_num):
- ind = (label == i)
- points = np.array(np.where(ind)).transpose((1, 0))
- if points.shape[0] < self.min_area:
- continue
- score_i = score_pocket[i]
- if score_i < self.min_score:
- continue
- if self.box_type == 'rect':
- rect = cv2.minAreaRect(points[:, ::-1])
- bbox = cv2.boxPoints(rect) * scale
- z = bbox.mean(0)
- bbox = z + (bbox - z) * 0.85
- elif self.box_type == 'poly':
- binary = np.zeros(label.shape, dtype='uint8')
- binary[ind] = 1
- try:
- _, contours, _ = cv2.findContours(
- binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- except BaseException:
- contours, _ = cv2.findContours(
- binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- bbox = contours[0] * scale
- bbox = bbox.astype('int32')
- bboxes.append(bbox.reshape(-1, 2))
- scores.append(score_i)
- boxes_batch.append({'points': bboxes})
- return boxes_batch
|