123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/stn_head.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn, ParamAttr
- from paddle.nn import functional as F
- import numpy as np
- from .tps_spatial_transformer import TPSSpatialTransformer
- def conv3x3_block(in_channels, out_channels, stride=1):
- n = 3 * 3 * out_channels
- w = math.sqrt(2. / n)
- conv_layer = nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size=3,
- stride=stride,
- padding=1,
- weight_attr=nn.initializer.Normal(
- mean=0.0, std=w),
- bias_attr=nn.initializer.Constant(0))
- block = nn.Sequential(conv_layer, nn.BatchNorm2D(out_channels), nn.ReLU())
- return block
- class STN(nn.Layer):
- def __init__(self, in_channels, num_ctrlpoints, activation='none'):
- super(STN, self).__init__()
- self.in_channels = in_channels
- self.num_ctrlpoints = num_ctrlpoints
- self.activation = activation
- self.stn_convnet = nn.Sequential(
- conv3x3_block(in_channels, 32), #32x64
- nn.MaxPool2D(
- kernel_size=2, stride=2),
- conv3x3_block(32, 64), #16x32
- nn.MaxPool2D(
- kernel_size=2, stride=2),
- conv3x3_block(64, 128), # 8*16
- nn.MaxPool2D(
- kernel_size=2, stride=2),
- conv3x3_block(128, 256), # 4*8
- nn.MaxPool2D(
- kernel_size=2, stride=2),
- conv3x3_block(256, 256), # 2*4,
- nn.MaxPool2D(
- kernel_size=2, stride=2),
- conv3x3_block(256, 256)) # 1*2
- self.stn_fc1 = nn.Sequential(
- nn.Linear(
- 2 * 256,
- 512,
- weight_attr=nn.initializer.Normal(0, 0.001),
- bias_attr=nn.initializer.Constant(0)),
- nn.BatchNorm1D(512),
- nn.ReLU())
- fc2_bias = self.init_stn()
- self.stn_fc2 = nn.Linear(
- 512,
- num_ctrlpoints * 2,
- weight_attr=nn.initializer.Constant(0.0),
- bias_attr=nn.initializer.Assign(fc2_bias))
- def init_stn(self):
- margin = 0.01
- sampling_num_per_side = int(self.num_ctrlpoints / 2)
- ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side)
- ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin
- ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin)
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
- ctrl_points = np.concatenate(
- [ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32)
- if self.activation == 'none':
- pass
- elif self.activation == 'sigmoid':
- ctrl_points = -np.log(1. / ctrl_points - 1.)
- ctrl_points = paddle.to_tensor(ctrl_points)
- fc2_bias = paddle.reshape(
- ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]])
- return fc2_bias
- def forward(self, x):
- x = self.stn_convnet(x)
- batch_size, _, h, w = x.shape
- x = paddle.reshape(x, shape=(batch_size, -1))
- img_feat = self.stn_fc1(x)
- x = self.stn_fc2(0.1 * img_feat)
- if self.activation == 'sigmoid':
- x = F.sigmoid(x)
- x = paddle.reshape(x, shape=[-1, self.num_ctrlpoints, 2])
- return img_feat, x
- class STN_ON(nn.Layer):
- def __init__(self, in_channels, tps_inputsize, tps_outputsize,
- num_control_points, tps_margins, stn_activation):
- super(STN_ON, self).__init__()
- self.tps = TPSSpatialTransformer(
- output_image_size=tuple(tps_outputsize),
- num_control_points=num_control_points,
- margins=tuple(tps_margins))
- self.stn_head = STN(in_channels=in_channels,
- num_ctrlpoints=num_control_points,
- activation=stn_activation)
- self.tps_inputsize = tps_inputsize
- self.out_channels = in_channels
- def forward(self, image):
- stn_input = paddle.nn.functional.interpolate(
- image, self.tps_inputsize, mode="bilinear", align_corners=True)
- stn_img_feat, ctrl_points = self.stn_head(stn_input)
- x, _ = self.tps(image, ctrl_points)
- return x
|