| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672 | # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##    http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.import mathimport paddlefrom paddle import nnimport paddle.nn.functional as Ffrom paddle.nn import LayerListfrom paddle.nn import Dropout, Linear, LayerNormimport numpy as npfrom ppocr.modeling.backbones.rec_svtrnet import Mlp, zeros_, ones_from paddle.nn.initializer import XavierNormal as xavier_normal_class Transformer(nn.Layer):    """A transformer model. User is able to modify the attributes as needed. The architechture    is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,    Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and    Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information    Processing Systems, pages 6000-6010.    Args:        d_model: the number of expected features in the encoder/decoder inputs (default=512).        nhead: the number of heads in the multiheadattention models (default=8).        num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).        num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).        dim_feedforward: the dimension of the feedforward network model (default=2048).        dropout: the dropout value (default=0.1).        custom_encoder: custom encoder (default=None).        custom_decoder: custom decoder (default=None).    """    def __init__(self,                 d_model=512,                 nhead=8,                 num_encoder_layers=6,                 beam_size=0,                 num_decoder_layers=6,                 max_len=25,                 dim_feedforward=1024,                 attention_dropout_rate=0.0,                 residual_dropout_rate=0.1,                 in_channels=0,                 out_channels=0,                 scale_embedding=True):        super(Transformer, self).__init__()        self.out_channels = out_channels + 1        self.max_len = max_len        self.embedding = Embeddings(            d_model=d_model,            vocab=self.out_channels,            padding_idx=0,            scale_embedding=scale_embedding)        self.positional_encoding = PositionalEncoding(            dropout=residual_dropout_rate, dim=d_model)        if num_encoder_layers > 0:            self.encoder = nn.LayerList([                TransformerBlock(                    d_model,                    nhead,                    dim_feedforward,                    attention_dropout_rate,                    residual_dropout_rate,                    with_self_attn=True,                    with_cross_attn=False) for i in range(num_encoder_layers)            ])        else:            self.encoder = None        self.decoder = nn.LayerList([            TransformerBlock(                d_model,                nhead,                dim_feedforward,                attention_dropout_rate,                residual_dropout_rate,                with_self_attn=True,                with_cross_attn=True) for i in range(num_decoder_layers)        ])        self.beam_size = beam_size        self.d_model = d_model        self.nhead = nhead        self.tgt_word_prj = nn.Linear(            d_model, self.out_channels, bias_attr=False)        w0 = np.random.normal(0.0, d_model**-0.5,                              (d_model, self.out_channels)).astype(np.float32)        self.tgt_word_prj.weight.set_value(w0)        self.apply(self._init_weights)    def _init_weights(self, m):        if isinstance(m, nn.Linear):            xavier_normal_(m.weight)            if m.bias is not None:                zeros_(m.bias)    def forward_train(self, src, tgt):        tgt = tgt[:, :-1]        tgt = self.embedding(tgt)        tgt = self.positional_encoding(tgt)        tgt_mask = self.generate_square_subsequent_mask(tgt.shape[1])        if self.encoder is not None:            src = self.positional_encoding(src)            for encoder_layer in self.encoder:                src = encoder_layer(src)            memory = src  # B N C        else:            memory = src  # B N C        for decoder_layer in self.decoder:            tgt = decoder_layer(tgt, memory, self_mask=tgt_mask)        output = tgt        logit = self.tgt_word_prj(output)        return logit    def forward(self, src, targets=None):        """Take in and process masked source/target sequences.        Args:            src: the sequence to the encoder (required).            tgt: the sequence to the decoder (required).        Shape:            - src: :math:`(B, sN, C)`.            - tgt: :math:`(B, tN, C)`.        Examples:            >>> output = transformer_model(src, tgt)        """        if self.training:            max_len = targets[1].max()            tgt = targets[0][:, :2 + max_len]            return self.forward_train(src, tgt)        else:            if self.beam_size > 0:                return self.forward_beam(src)            else:                return self.forward_test(src)    def forward_test(self, src):        bs = paddle.shape(src)[0]        if self.encoder is not None:            src = self.positional_encoding(src)            for encoder_layer in self.encoder:                src = encoder_layer(src)            memory = src  # B N C        else:            memory = src        dec_seq = paddle.full((bs, 1), 2, dtype=paddle.int64)        dec_prob = paddle.full((bs, 1), 1., dtype=paddle.float32)        for len_dec_seq in range(1, paddle.to_tensor(self.max_len)):            dec_seq_embed = self.embedding(dec_seq)            dec_seq_embed = self.positional_encoding(dec_seq_embed)            tgt_mask = self.generate_square_subsequent_mask(                paddle.shape(dec_seq_embed)[1])            tgt = dec_seq_embed            for decoder_layer in self.decoder:                tgt = decoder_layer(tgt, memory, self_mask=tgt_mask)            dec_output = tgt            dec_output = dec_output[:, -1, :]            word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=-1)            preds_idx = paddle.argmax(word_prob, axis=-1)            if paddle.equal_all(                    preds_idx,                    paddle.full(                        paddle.shape(preds_idx), 3, dtype='int64')):                break            preds_prob = paddle.max(word_prob, axis=-1)            dec_seq = paddle.concat(                [dec_seq, paddle.reshape(preds_idx, [-1, 1])], axis=1)            dec_prob = paddle.concat(                [dec_prob, paddle.reshape(preds_prob, [-1, 1])], axis=1)        return [dec_seq, dec_prob]    def forward_beam(self, images):        """ Translation work in one batch """        def get_inst_idx_to_tensor_position_map(inst_idx_list):            """ Indicate the position of an instance in a tensor. """            return {                inst_idx: tensor_position                for tensor_position, inst_idx in enumerate(inst_idx_list)            }        def collect_active_part(beamed_tensor, curr_active_inst_idx,                                n_prev_active_inst, n_bm):            """ Collect tensor parts associated to active instances. """            beamed_tensor_shape = paddle.shape(beamed_tensor)            n_curr_active_inst = len(curr_active_inst_idx)            new_shape = (n_curr_active_inst * n_bm, beamed_tensor_shape[1],                         beamed_tensor_shape[2])            beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])            beamed_tensor = beamed_tensor.index_select(                curr_active_inst_idx, axis=0)            beamed_tensor = beamed_tensor.reshape(new_shape)            return beamed_tensor        def collate_active_info(src_enc, inst_idx_to_position_map,                                active_inst_idx_list):            # Sentences which are still active are collected,            # so the decoder will not run on completed sentences.            n_prev_active_inst = len(inst_idx_to_position_map)            active_inst_idx = [                inst_idx_to_position_map[k] for k in active_inst_idx_list            ]            active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')            active_src_enc = collect_active_part(                src_enc.transpose([1, 0, 2]), active_inst_idx,                n_prev_active_inst, n_bm).transpose([1, 0, 2])            active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(                active_inst_idx_list)            return active_src_enc, active_inst_idx_to_position_map        def beam_decode_step(inst_dec_beams, len_dec_seq, enc_output,                             inst_idx_to_position_map, n_bm):            """ Decode and update beam status, and then return active beam idx """            def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):                dec_partial_seq = [                    b.get_current_state() for b in inst_dec_beams if not b.done                ]                dec_partial_seq = paddle.stack(dec_partial_seq)                dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])                return dec_partial_seq            def predict_word(dec_seq, enc_output, n_active_inst, n_bm):                dec_seq = self.embedding(dec_seq)                dec_seq = self.positional_encoding(dec_seq)                tgt_mask = self.generate_square_subsequent_mask(                    paddle.shape(dec_seq)[1])                tgt = dec_seq                for decoder_layer in self.decoder:                    tgt = decoder_layer(tgt, enc_output, self_mask=tgt_mask)                dec_output = tgt                dec_output = dec_output[:,                                        -1, :]  # Pick the last step: (bh * bm) * d_h                word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)                word_prob = paddle.reshape(word_prob, [n_active_inst, n_bm, -1])                return word_prob            def collect_active_inst_idx_list(inst_beams, word_prob,                                             inst_idx_to_position_map):                active_inst_idx_list = []                for inst_idx, inst_position in inst_idx_to_position_map.items():                    is_inst_complete = inst_beams[inst_idx].advance(word_prob[                        inst_position])                    if not is_inst_complete:                        active_inst_idx_list += [inst_idx]                return active_inst_idx_list            n_active_inst = len(inst_idx_to_position_map)            dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)            word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm)            # Update the beam with predicted word prob information and collect incomplete instances            active_inst_idx_list = collect_active_inst_idx_list(                inst_dec_beams, word_prob, inst_idx_to_position_map)            return active_inst_idx_list        def collect_hypothesis_and_scores(inst_dec_beams, n_best):            all_hyp, all_scores = [], []            for inst_idx in range(len(inst_dec_beams)):                scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()                all_scores += [scores[:n_best]]                hyps = [                    inst_dec_beams[inst_idx].get_hypothesis(i)                    for i in tail_idxs[:n_best]                ]                all_hyp += [hyps]            return all_hyp, all_scores        with paddle.no_grad():            #-- Encode            if self.encoder is not None:                src = self.positional_encoding(images)                src_enc = self.encoder(src)            else:                src_enc = images            n_bm = self.beam_size            src_shape = paddle.shape(src_enc)            inst_dec_beams = [Beam(n_bm) for _ in range(1)]            active_inst_idx_list = list(range(1))            # Repeat data for beam search            src_enc = paddle.tile(src_enc, [1, n_bm, 1])            inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(                active_inst_idx_list)            # Decode            for len_dec_seq in range(1, paddle.to_tensor(self.max_len)):                src_enc_copy = src_enc.clone()                active_inst_idx_list = beam_decode_step(                    inst_dec_beams, len_dec_seq, src_enc_copy,                    inst_idx_to_position_map, n_bm)                if not active_inst_idx_list:                    break  # all instances have finished their path to <EOS>                src_enc, inst_idx_to_position_map = collate_active_info(                    src_enc_copy, inst_idx_to_position_map,                    active_inst_idx_list)        batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams,                                                                1)        result_hyp = []        hyp_scores = []        for bs_hyp, score in zip(batch_hyp, batch_scores):            l = len(bs_hyp[0])            bs_hyp_pad = bs_hyp[0] + [3] * (25 - l)            result_hyp.append(bs_hyp_pad)            score = float(score) / l            hyp_score = [score for _ in range(25)]            hyp_scores.append(hyp_score)        return [            paddle.to_tensor(                np.array(result_hyp), dtype=paddle.int64),            paddle.to_tensor(hyp_scores)        ]    def generate_square_subsequent_mask(self, sz):        """Generate a square mask for the sequence. The masked positions are filled with float('-inf').            Unmasked positions are filled with float(0.0).        """        mask = paddle.zeros([sz, sz], dtype='float32')        mask_inf = paddle.triu(            paddle.full(                shape=[sz, sz], dtype='float32', fill_value='-inf'),            diagonal=1)        mask = mask + mask_inf        return mask.unsqueeze([0, 1])class MultiheadAttention(nn.Layer):    """Allows the model to jointly attend to information    from different representation subspaces.    See reference: Attention Is All You Need    .. math::        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O        \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)    Args:        embed_dim: total dimension of the model        num_heads: parallel attention layers, or heads    """    def __init__(self, embed_dim, num_heads, dropout=0., self_attn=False):        super(MultiheadAttention, self).__init__()        self.embed_dim = embed_dim        self.num_heads = num_heads        # self.dropout = dropout        self.head_dim = embed_dim // num_heads        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"        self.scale = self.head_dim**-0.5        self.self_attn = self_attn        if self_attn:            self.qkv = nn.Linear(embed_dim, embed_dim * 3)        else:            self.q = nn.Linear(embed_dim, embed_dim)            self.kv = nn.Linear(embed_dim, embed_dim * 2)        self.attn_drop = nn.Dropout(dropout)        self.out_proj = nn.Linear(embed_dim, embed_dim)    def forward(self, query, key=None, attn_mask=None):        qN = query.shape[1]        if self.self_attn:            qkv = self.qkv(query).reshape(                (0, qN, 3, self.num_heads, self.head_dim)).transpose(                    (2, 0, 3, 1, 4))            q, k, v = qkv[0], qkv[1], qkv[2]        else:            kN = key.shape[1]            q = self.q(query).reshape(                [0, qN, self.num_heads, self.head_dim]).transpose([0, 2, 1, 3])            kv = self.kv(key).reshape(                (0, kN, 2, self.num_heads, self.head_dim)).transpose(                    (2, 0, 3, 1, 4))            k, v = kv[0], kv[1]        attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale        if attn_mask is not None:            attn += attn_mask        attn = F.softmax(attn, axis=-1)        attn = self.attn_drop(attn)        x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape(            (0, qN, self.embed_dim))        x = self.out_proj(x)        return xclass TransformerBlock(nn.Layer):    def __init__(self,                 d_model,                 nhead,                 dim_feedforward=2048,                 attention_dropout_rate=0.0,                 residual_dropout_rate=0.1,                 with_self_attn=True,                 with_cross_attn=False,                 epsilon=1e-5):        super(TransformerBlock, self).__init__()        self.with_self_attn = with_self_attn        if with_self_attn:            self.self_attn = MultiheadAttention(                d_model,                nhead,                dropout=attention_dropout_rate,                self_attn=with_self_attn)            self.norm1 = LayerNorm(d_model, epsilon=epsilon)            self.dropout1 = Dropout(residual_dropout_rate)        self.with_cross_attn = with_cross_attn        if with_cross_attn:            self.cross_attn = MultiheadAttention(  #for self_attn of encoder or cross_attn of decoder                d_model,                nhead,                dropout=attention_dropout_rate)            self.norm2 = LayerNorm(d_model, epsilon=epsilon)            self.dropout2 = Dropout(residual_dropout_rate)        self.mlp = Mlp(in_features=d_model,                       hidden_features=dim_feedforward,                       act_layer=nn.ReLU,                       drop=residual_dropout_rate)        self.norm3 = LayerNorm(d_model, epsilon=epsilon)        self.dropout3 = Dropout(residual_dropout_rate)    def forward(self, tgt, memory=None, self_mask=None, cross_mask=None):        if self.with_self_attn:            tgt1 = self.self_attn(tgt, attn_mask=self_mask)            tgt = self.norm1(tgt + self.dropout1(tgt1))        if self.with_cross_attn:            tgt2 = self.cross_attn(tgt, key=memory, attn_mask=cross_mask)            tgt = self.norm2(tgt + self.dropout2(tgt2))        tgt = self.norm3(tgt + self.dropout3(self.mlp(tgt)))        return tgtclass PositionalEncoding(nn.Layer):    """Inject some information about the relative or absolute position of the tokens        in the sequence. The positional encodings have the same dimension as        the embeddings, so that the two can be summed. Here, we use sine and cosine        functions of different frequencies.    .. math::        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))        \text{where pos is the word position and i is the embed idx)    Args:        d_model: the embed dim (required).        dropout: the dropout value (default=0.1).        max_len: the max. length of the incoming sequence (default=5000).    Examples:        >>> pos_encoder = PositionalEncoding(d_model)    """    def __init__(self, dropout, dim, max_len=5000):        super(PositionalEncoding, self).__init__()        self.dropout = nn.Dropout(p=dropout)        pe = paddle.zeros([max_len, dim])        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)        div_term = paddle.exp(            paddle.arange(0, dim, 2).astype('float32') *            (-math.log(10000.0) / dim))        pe[:, 0::2] = paddle.sin(position * div_term)        pe[:, 1::2] = paddle.cos(position * div_term)        pe = paddle.unsqueeze(pe, 0)        pe = paddle.transpose(pe, [1, 0, 2])        self.register_buffer('pe', pe)    def forward(self, x):        """Inputs of forward function        Args:            x: the sequence fed to the positional encoder model (required).        Shape:            x: [sequence length, batch size, embed dim]            output: [sequence length, batch size, embed dim]        Examples:            >>> output = pos_encoder(x)        """        x = x.transpose([1, 0, 2])        x = x + self.pe[:paddle.shape(x)[0], :]        return self.dropout(x).transpose([1, 0, 2])class PositionalEncoding_2d(nn.Layer):    """Inject some information about the relative or absolute position of the tokens        in the sequence. The positional encodings have the same dimension as        the embeddings, so that the two can be summed. Here, we use sine and cosine        functions of different frequencies.    .. math::        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))        \text{where pos is the word position and i is the embed idx)    Args:        d_model: the embed dim (required).        dropout: the dropout value (default=0.1).        max_len: the max. length of the incoming sequence (default=5000).    Examples:        >>> pos_encoder = PositionalEncoding(d_model)    """    def __init__(self, dropout, dim, max_len=5000):        super(PositionalEncoding_2d, self).__init__()        self.dropout = nn.Dropout(p=dropout)        pe = paddle.zeros([max_len, dim])        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)        div_term = paddle.exp(            paddle.arange(0, dim, 2).astype('float32') *            (-math.log(10000.0) / dim))        pe[:, 0::2] = paddle.sin(position * div_term)        pe[:, 1::2] = paddle.cos(position * div_term)        pe = paddle.transpose(paddle.unsqueeze(pe, 0), [1, 0, 2])        self.register_buffer('pe', pe)        self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))        self.linear1 = nn.Linear(dim, dim)        self.linear1.weight.data.fill_(1.)        self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))        self.linear2 = nn.Linear(dim, dim)        self.linear2.weight.data.fill_(1.)    def forward(self, x):        """Inputs of forward function        Args:            x: the sequence fed to the positional encoder model (required).        Shape:            x: [sequence length, batch size, embed dim]            output: [sequence length, batch size, embed dim]        Examples:            >>> output = pos_encoder(x)        """        w_pe = self.pe[:paddle.shape(x)[-1], :]        w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)        w_pe = w_pe * w1        w_pe = paddle.transpose(w_pe, [1, 2, 0])        w_pe = paddle.unsqueeze(w_pe, 2)        h_pe = self.pe[:paddle.shape(x).shape[-2], :]        w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)        h_pe = h_pe * w2        h_pe = paddle.transpose(h_pe, [1, 2, 0])        h_pe = paddle.unsqueeze(h_pe, 3)        x = x + w_pe + h_pe        x = paddle.transpose(            paddle.reshape(x,                           [x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]),            [2, 0, 1])        return self.dropout(x)class Embeddings(nn.Layer):    def __init__(self, d_model, vocab, padding_idx=None, scale_embedding=True):        super(Embeddings, self).__init__()        self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)        w0 = np.random.normal(0.0, d_model**-0.5,                              (vocab, d_model)).astype(np.float32)        self.embedding.weight.set_value(w0)        self.d_model = d_model        self.scale_embedding = scale_embedding    def forward(self, x):        if self.scale_embedding:            x = self.embedding(x)            return x * math.sqrt(self.d_model)        return self.embedding(x)class Beam():    """ Beam search """    def __init__(self, size, device=False):        self.size = size        self._done = False        # The score for each translation on the beam.        self.scores = paddle.zeros((size, ), dtype=paddle.float32)        self.all_scores = []        # The backpointers at each time-step.        self.prev_ks = []        # The outputs at each time-step.        self.next_ys = [paddle.full((size, ), 0, dtype=paddle.int64)]        self.next_ys[0][0] = 2    def get_current_state(self):        "Get the outputs for the current timestep."        return self.get_tentative_hypothesis()    def get_current_origin(self):        "Get the backpointers for the current timestep."        return self.prev_ks[-1]    @property    def done(self):        return self._done    def advance(self, word_prob):        "Update beam status and check if finished or not."        num_words = word_prob.shape[1]        # Sum the previous scores.        if len(self.prev_ks) > 0:            beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)        else:            beam_lk = word_prob[0]        flat_beam_lk = beam_lk.reshape([-1])        best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True,                                                        True)  # 1st sort        self.all_scores.append(self.scores)        self.scores = best_scores        # bestScoresId is flattened as a (beam x word) array,        # so we need to calculate which word and beam each score came from        prev_k = best_scores_id // num_words        self.prev_ks.append(prev_k)        self.next_ys.append(best_scores_id - prev_k * num_words)        # End condition is when top-of-beam is EOS.        if self.next_ys[-1][0] == 3:            self._done = True            self.all_scores.append(self.scores)        return self._done    def sort_scores(self):        "Sort the scores."        return self.scores, paddle.to_tensor(            [i for i in range(int(self.scores.shape[0]))], dtype='int32')    def get_the_best_score_and_idx(self):        "Get the score of the best in the beam."        scores, ids = self.sort_scores()        return scores[1], ids[1]    def get_tentative_hypothesis(self):        "Get the decoded sequence for the current timestep."        if len(self.next_ys) == 1:            dec_seq = self.next_ys[0].unsqueeze(1)        else:            _, keys = self.sort_scores()            hyps = [self.get_hypothesis(k) for k in keys]            hyps = [[2] + h for h in hyps]            dec_seq = paddle.to_tensor(hyps, dtype='int64')        return dec_seq    def get_hypothesis(self, k):        """ Walk back to construct the full hypothesis. """        hyp = []        for j in range(len(self.prev_ks) - 1, -1, -1):            hyp.append(self.next_ys[j + 1][k])            k = self.prev_ks[j][k]        return list(map(lambda x: x.item(), hyp[::-1]))
 |