rec_abinet_head.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. """
  15. This code is refer from:
  16. https://github.com/FangShancheng/ABINet/tree/main/modules
  17. """
  18. import math
  19. import paddle
  20. from paddle import nn
  21. import paddle.nn.functional as F
  22. from paddle.nn import LayerList
  23. from ppocr.modeling.heads.rec_nrtr_head import TransformerBlock, PositionalEncoding
  24. class BCNLanguage(nn.Layer):
  25. def __init__(self,
  26. d_model=512,
  27. nhead=8,
  28. num_layers=4,
  29. dim_feedforward=2048,
  30. dropout=0.,
  31. max_length=25,
  32. detach=True,
  33. num_classes=37):
  34. super().__init__()
  35. self.d_model = d_model
  36. self.detach = detach
  37. self.max_length = max_length + 1 # additional stop token
  38. self.proj = nn.Linear(num_classes, d_model, bias_attr=False)
  39. self.token_encoder = PositionalEncoding(
  40. dropout=0.1, dim=d_model, max_len=self.max_length)
  41. self.pos_encoder = PositionalEncoding(
  42. dropout=0, dim=d_model, max_len=self.max_length)
  43. self.decoder = nn.LayerList([
  44. TransformerBlock(
  45. d_model=d_model,
  46. nhead=nhead,
  47. dim_feedforward=dim_feedforward,
  48. attention_dropout_rate=dropout,
  49. residual_dropout_rate=dropout,
  50. with_self_attn=False,
  51. with_cross_attn=True) for i in range(num_layers)
  52. ])
  53. self.cls = nn.Linear(d_model, num_classes)
  54. def forward(self, tokens, lengths):
  55. """
  56. Args:
  57. tokens: (B, N, C) where N is length, B is batch size and C is classes number
  58. lengths: (B,)
  59. """
  60. if self.detach: tokens = tokens.detach()
  61. embed = self.proj(tokens) # (B, N, C)
  62. embed = self.token_encoder(embed) # (B, N, C)
  63. padding_mask = _get_mask(lengths, self.max_length)
  64. zeros = paddle.zeros_like(embed) # (B, N, C)
  65. qeury = self.pos_encoder(zeros)
  66. for decoder_layer in self.decoder:
  67. qeury = decoder_layer(qeury, embed, cross_mask=padding_mask)
  68. output = qeury # (B, N, C)
  69. logits = self.cls(output) # (B, N, C)
  70. return output, logits
  71. def encoder_layer(in_c, out_c, k=3, s=2, p=1):
  72. return nn.Sequential(
  73. nn.Conv2D(in_c, out_c, k, s, p), nn.BatchNorm2D(out_c), nn.ReLU())
  74. def decoder_layer(in_c,
  75. out_c,
  76. k=3,
  77. s=1,
  78. p=1,
  79. mode='nearest',
  80. scale_factor=None,
  81. size=None):
  82. align_corners = False if mode == 'nearest' else True
  83. return nn.Sequential(
  84. nn.Upsample(
  85. size=size,
  86. scale_factor=scale_factor,
  87. mode=mode,
  88. align_corners=align_corners),
  89. nn.Conv2D(in_c, out_c, k, s, p),
  90. nn.BatchNorm2D(out_c),
  91. nn.ReLU())
  92. class PositionAttention(nn.Layer):
  93. def __init__(self,
  94. max_length,
  95. in_channels=512,
  96. num_channels=64,
  97. h=8,
  98. w=32,
  99. mode='nearest',
  100. **kwargs):
  101. super().__init__()
  102. self.max_length = max_length
  103. self.k_encoder = nn.Sequential(
  104. encoder_layer(
  105. in_channels, num_channels, s=(1, 2)),
  106. encoder_layer(
  107. num_channels, num_channels, s=(2, 2)),
  108. encoder_layer(
  109. num_channels, num_channels, s=(2, 2)),
  110. encoder_layer(
  111. num_channels, num_channels, s=(2, 2)))
  112. self.k_decoder = nn.Sequential(
  113. decoder_layer(
  114. num_channels, num_channels, scale_factor=2, mode=mode),
  115. decoder_layer(
  116. num_channels, num_channels, scale_factor=2, mode=mode),
  117. decoder_layer(
  118. num_channels, num_channels, scale_factor=2, mode=mode),
  119. decoder_layer(
  120. num_channels, in_channels, size=(h, w), mode=mode))
  121. self.pos_encoder = PositionalEncoding(
  122. dropout=0, dim=in_channels, max_len=max_length)
  123. self.project = nn.Linear(in_channels, in_channels)
  124. def forward(self, x):
  125. B, C, H, W = x.shape
  126. k, v = x, x
  127. # calculate key vector
  128. features = []
  129. for i in range(0, len(self.k_encoder)):
  130. k = self.k_encoder[i](k)
  131. features.append(k)
  132. for i in range(0, len(self.k_decoder) - 1):
  133. k = self.k_decoder[i](k)
  134. # print(k.shape, features[len(self.k_decoder) - 2 - i].shape)
  135. k = k + features[len(self.k_decoder) - 2 - i]
  136. k = self.k_decoder[-1](k)
  137. # calculate query vector
  138. # TODO q=f(q,k)
  139. zeros = paddle.zeros(
  140. (B, self.max_length, C), dtype=x.dtype) # (T, N, C)
  141. q = self.pos_encoder(zeros) # (B, N, C)
  142. q = self.project(q) # (B, N, C)
  143. # calculate attention
  144. attn_scores = q @k.flatten(2) # (B, N, (H*W))
  145. attn_scores = attn_scores / (C**0.5)
  146. attn_scores = F.softmax(attn_scores, axis=-1)
  147. v = v.flatten(2).transpose([0, 2, 1]) # (B, (H*W), C)
  148. attn_vecs = attn_scores @v # (B, N, C)
  149. return attn_vecs, attn_scores.reshape([0, self.max_length, H, W])
  150. class ABINetHead(nn.Layer):
  151. def __init__(self,
  152. in_channels,
  153. out_channels,
  154. d_model=512,
  155. nhead=8,
  156. num_layers=3,
  157. dim_feedforward=2048,
  158. dropout=0.1,
  159. max_length=25,
  160. use_lang=False,
  161. iter_size=1):
  162. super().__init__()
  163. self.max_length = max_length + 1
  164. self.pos_encoder = PositionalEncoding(
  165. dropout=0.1, dim=d_model, max_len=8 * 32)
  166. self.encoder = nn.LayerList([
  167. TransformerBlock(
  168. d_model=d_model,
  169. nhead=nhead,
  170. dim_feedforward=dim_feedforward,
  171. attention_dropout_rate=dropout,
  172. residual_dropout_rate=dropout,
  173. with_self_attn=True,
  174. with_cross_attn=False) for i in range(num_layers)
  175. ])
  176. self.decoder = PositionAttention(
  177. max_length=max_length + 1, # additional stop token
  178. mode='nearest', )
  179. self.out_channels = out_channels
  180. self.cls = nn.Linear(d_model, self.out_channels)
  181. self.use_lang = use_lang
  182. if use_lang:
  183. self.iter_size = iter_size
  184. self.language = BCNLanguage(
  185. d_model=d_model,
  186. nhead=nhead,
  187. num_layers=4,
  188. dim_feedforward=dim_feedforward,
  189. dropout=dropout,
  190. max_length=max_length,
  191. num_classes=self.out_channels)
  192. # alignment
  193. self.w_att_align = nn.Linear(2 * d_model, d_model)
  194. self.cls_align = nn.Linear(d_model, self.out_channels)
  195. def forward(self, x, targets=None):
  196. x = x.transpose([0, 2, 3, 1])
  197. _, H, W, C = x.shape
  198. feature = x.flatten(1, 2)
  199. feature = self.pos_encoder(feature)
  200. for encoder_layer in self.encoder:
  201. feature = encoder_layer(feature)
  202. feature = feature.reshape([0, H, W, C]).transpose([0, 3, 1, 2])
  203. v_feature, attn_scores = self.decoder(
  204. feature) # (B, N, C), (B, C, H, W)
  205. vis_logits = self.cls(v_feature) # (B, N, C)
  206. logits = vis_logits
  207. vis_lengths = _get_length(vis_logits)
  208. if self.use_lang:
  209. align_logits = vis_logits
  210. align_lengths = vis_lengths
  211. all_l_res, all_a_res = [], []
  212. for i in range(self.iter_size):
  213. tokens = F.softmax(align_logits, axis=-1)
  214. lengths = align_lengths
  215. lengths = paddle.clip(
  216. lengths, 2, self.max_length) # TODO:move to langauge model
  217. l_feature, l_logits = self.language(tokens, lengths)
  218. # alignment
  219. all_l_res.append(l_logits)
  220. fuse = paddle.concat((l_feature, v_feature), -1)
  221. f_att = F.sigmoid(self.w_att_align(fuse))
  222. output = f_att * v_feature + (1 - f_att) * l_feature
  223. align_logits = self.cls_align(output) # (B, N, C)
  224. align_lengths = _get_length(align_logits)
  225. all_a_res.append(align_logits)
  226. if self.training:
  227. return {
  228. 'align': all_a_res,
  229. 'lang': all_l_res,
  230. 'vision': vis_logits
  231. }
  232. else:
  233. logits = align_logits
  234. if self.training:
  235. return logits
  236. else:
  237. return F.softmax(logits, -1)
  238. def _get_length(logit):
  239. """ Greed decoder to obtain length from logit"""
  240. out = (logit.argmax(-1) == 0)
  241. abn = out.any(-1)
  242. out_int = out.cast('int32')
  243. out = (out_int.cumsum(-1) == 1) & out
  244. out = out.cast('int32')
  245. out = out.argmax(-1)
  246. out = out + 1
  247. len_seq = paddle.zeros_like(out) + logit.shape[1]
  248. out = paddle.where(abn, out, len_seq)
  249. return out
  250. def _get_mask(length, max_length):
  251. """Generate a square mask for the sequence. The masked positions are filled with float('-inf').
  252. Unmasked positions are filled with float(0.0).
  253. """
  254. length = length.unsqueeze(-1)
  255. B = paddle.shape(length)[0]
  256. grid = paddle.arange(0, max_length).unsqueeze(0).tile([B, 1])
  257. zero_mask = paddle.zeros([B, max_length], dtype='float32')
  258. inf_mask = paddle.full([B, max_length], '-inf', dtype='float32')
  259. diag_mask = paddle.diag(
  260. paddle.full(
  261. [max_length], '-inf', dtype=paddle.float32),
  262. offset=0,
  263. name=None)
  264. mask = paddle.where(grid >= length, inf_mask, zero_mask)
  265. mask = mask.unsqueeze(1) + diag_mask
  266. return mask.unsqueeze(1)