123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- __all__ = ['DetMetric', 'DetFCEMetric']
- from .eval_det_iou import DetectionIoUEvaluator
- class DetMetric(object):
- def __init__(self, main_indicator='hmean', **kwargs):
- self.evaluator = DetectionIoUEvaluator()
- self.main_indicator = main_indicator
- self.reset()
- def __call__(self, preds, batch, **kwargs):
- '''
- batch: a list produced by dataloaders.
- image: np.ndarray of shape (N, C, H, W).
- ratio_list: np.ndarray of shape(N,2)
- polygons: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
- ignore_tags: np.ndarray of shape (N, K), indicates whether a region is ignorable or not.
- preds: a list of dict produced by post process
- points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
- '''
- gt_polyons_batch = batch[2]
- ignore_tags_batch = batch[3]
- for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
- ignore_tags_batch):
- # prepare gt
- gt_info_list = [{
- 'points': gt_polyon,
- 'text': '',
- 'ignore': ignore_tag
- } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
- # prepare det
- det_info_list = [{
- 'points': det_polyon,
- 'text': ''
- } for det_polyon in pred['points']]
- result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
- self.results.append(result)
- def get_metric(self):
- """
- return metrics {
- 'precision': 0,
- 'recall': 0,
- 'hmean': 0
- }
- """
- metrics = self.evaluator.combine_results(self.results)
- self.reset()
- return metrics
- def reset(self):
- self.results = [] # clear results
- class DetFCEMetric(object):
- def __init__(self, main_indicator='hmean', **kwargs):
- self.evaluator = DetectionIoUEvaluator()
- self.main_indicator = main_indicator
- self.reset()
- def __call__(self, preds, batch, **kwargs):
- '''
- batch: a list produced by dataloaders.
- image: np.ndarray of shape (N, C, H, W).
- ratio_list: np.ndarray of shape(N,2)
- polygons: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
- ignore_tags: np.ndarray of shape (N, K), indicates whether a region is ignorable or not.
- preds: a list of dict produced by post process
- points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
- '''
- gt_polyons_batch = batch[2]
- ignore_tags_batch = batch[3]
- for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
- ignore_tags_batch):
- # prepare gt
- gt_info_list = [{
- 'points': gt_polyon,
- 'text': '',
- 'ignore': ignore_tag
- } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
- # prepare det
- det_info_list = [{
- 'points': det_polyon,
- 'text': '',
- 'score': score
- } for det_polyon, score in zip(pred['points'], pred['scores'])]
- for score_thr in self.results.keys():
- det_info_list_thr = [
- det_info for det_info in det_info_list
- if det_info['score'] >= score_thr
- ]
- result = self.evaluator.evaluate_image(gt_info_list,
- det_info_list_thr)
- self.results[score_thr].append(result)
- def get_metric(self):
- """
- return metrics {'heman':0,
- 'thr 0.3':'precision: 0 recall: 0 hmean: 0',
- 'thr 0.4':'precision: 0 recall: 0 hmean: 0',
- 'thr 0.5':'precision: 0 recall: 0 hmean: 0',
- 'thr 0.6':'precision: 0 recall: 0 hmean: 0',
- 'thr 0.7':'precision: 0 recall: 0 hmean: 0',
- 'thr 0.8':'precision: 0 recall: 0 hmean: 0',
- 'thr 0.9':'precision: 0 recall: 0 hmean: 0',
- }
- """
- metrics = {}
- hmean = 0
- for score_thr in self.results.keys():
- metric = self.evaluator.combine_results(self.results[score_thr])
- # for key, value in metric.items():
- # metrics['{}_{}'.format(key, score_thr)] = value
- metric_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format(
- metric['precision'], metric['recall'], metric['hmean'])
- metrics['thr {}'.format(score_thr)] = metric_str
- hmean = max(hmean, metric['hmean'])
- metrics['hmean'] = hmean
- self.reset()
- return metrics
- def reset(self):
- self.results = {
- 0.3: [],
- 0.4: [],
- 0.5: [],
- 0.6: [],
- 0.7: [],
- 0.8: [],
- 0.9: []
- } # clear results
|