| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546 | # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##    http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionfrom paddle import nnfrom ppocr.losses.basic_loss import DMLLossclass VQASerTokenLayoutLMLoss(nn.Layer):    def __init__(self, num_classes, key=None):        super().__init__()        self.loss_class = nn.CrossEntropyLoss()        self.num_classes = num_classes        self.ignore_index = self.loss_class.ignore_index        self.key = key    def forward(self, predicts, batch):        if isinstance(predicts, dict) and self.key is not None:            predicts = predicts[self.key]        labels = batch[5]        attention_mask = batch[2]        if attention_mask is not None:            active_loss = attention_mask.reshape([-1, ]) == 1            active_output = predicts.reshape(                [-1, self.num_classes])[active_loss]            active_label = labels.reshape([-1, ])[active_loss]            loss = self.loss_class(active_output, active_label)        else:            loss = self.loss_class(                predicts.reshape([-1, self.num_classes]),                labels.reshape([-1, ]))        return {'loss': loss}
 |