12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import nn
- from ppocr.losses.basic_loss import DMLLoss
- class VQASerTokenLayoutLMLoss(nn.Layer):
- def __init__(self, num_classes, key=None):
- super().__init__()
- self.loss_class = nn.CrossEntropyLoss()
- self.num_classes = num_classes
- self.ignore_index = self.loss_class.ignore_index
- self.key = key
- def forward(self, predicts, batch):
- if isinstance(predicts, dict) and self.key is not None:
- predicts = predicts[self.key]
- labels = batch[5]
- attention_mask = batch[2]
- if attention_mask is not None:
- active_loss = attention_mask.reshape([-1, ]) == 1
- active_output = predicts.reshape(
- [-1, self.num_classes])[active_loss]
- active_label = labels.reshape([-1, ])[active_loss]
- loss = self.loss_class(active_output, active_label)
- else:
- loss = self.loss_class(
- predicts.reshape([-1, self.num_classes]),
- labels.reshape([-1, ]))
- return {'loss': loss}
|