12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/wangyuxin87/VisionLAN
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- class VLLoss(nn.Layer):
- def __init__(self, mode='LF_1', weight_res=0.5, weight_mas=0.5, **kwargs):
- super(VLLoss, self).__init__()
- self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="mean")
- assert mode in ['LF_1', 'LF_2', 'LA']
- self.mode = mode
- self.weight_res = weight_res
- self.weight_mas = weight_mas
- def flatten_label(self, target):
- label_flatten = []
- label_length = []
- for i in range(0, target.shape[0]):
- cur_label = target[i].tolist()
- label_flatten += cur_label[:cur_label.index(0) + 1]
- label_length.append(cur_label.index(0) + 1)
- label_flatten = paddle.to_tensor(label_flatten, dtype='int64')
- label_length = paddle.to_tensor(label_length, dtype='int32')
- return (label_flatten, label_length)
- def _flatten(self, sources, lengths):
- return paddle.concat([t[:l] for t, l in zip(sources, lengths)])
- def forward(self, predicts, batch):
- text_pre = predicts[0]
- target = batch[1].astype('int64')
- label_flatten, length = self.flatten_label(target)
- text_pre = self._flatten(text_pre, length)
- if self.mode == 'LF_1':
- loss = self.loss_func(text_pre, label_flatten)
- else:
- text_rem = predicts[1]
- text_mas = predicts[2]
- target_res = batch[2].astype('int64')
- target_sub = batch[3].astype('int64')
- label_flatten_res, length_res = self.flatten_label(target_res)
- label_flatten_sub, length_sub = self.flatten_label(target_sub)
- text_rem = self._flatten(text_rem, length_res)
- text_mas = self._flatten(text_mas, length_sub)
- loss_ori = self.loss_func(text_pre, label_flatten)
- loss_res = self.loss_func(text_rem, label_flatten_res)
- loss_mas = self.loss_func(text_mas, label_flatten_sub)
- loss = loss_ori + loss_res * self.weight_res + loss_mas * self.weight_mas
- return {'loss': loss}
|