1234567891011121314151617181920212223242526272829 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- class SARLoss(nn.Layer):
- def __init__(self, **kwargs):
- super(SARLoss, self).__init__()
- ignore_index = kwargs.get('ignore_index', 92) # 6626
- self.loss_func = paddle.nn.loss.CrossEntropyLoss(
- reduction="mean", ignore_index=ignore_index)
- def forward(self, predicts, batch):
- predict = predicts[:, :
- -1, :] # ignore last index of outputs to be in same seq_len with targets
- label = batch[1].astype(
- "int64")[:, 1:] # ignore first index of target in loss calculation
- batch_size, num_steps, num_classes = predict.shape[0], predict.shape[
- 1], predict.shape[2]
- assert len(label.shape) == len(list(predict.shape)) - 1, \
- "The target's shape and inputs's shape is [N, d] and [N, num_steps]"
- inputs = paddle.reshape(predict, [-1, num_classes])
- targets = paddle.reshape(label, [-1])
- loss = self.loss_func(inputs, targets)
- return {'loss': loss}
|