1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/hikopensource/DAVAR-Lab-OCR/blob/main/davarocr/davar_common/models/loss/cross_entropy_loss.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- from .basic_loss import CELoss, DistanceLoss
- class RFLLoss(nn.Layer):
- def __init__(self, ignore_index=-100, **kwargs):
- super().__init__()
- self.cnt_loss = nn.MSELoss(**kwargs)
- self.seq_loss = nn.CrossEntropyLoss(ignore_index=ignore_index)
- def forward(self, predicts, batch):
- self.total_loss = {}
- total_loss = 0.0
- if isinstance(predicts, tuple) or isinstance(predicts, list):
- cnt_outputs, seq_outputs = predicts
- else:
- cnt_outputs, seq_outputs = predicts, None
- # batch [image, label, length, cnt_label]
- if cnt_outputs is not None:
- cnt_loss = self.cnt_loss(cnt_outputs,
- paddle.cast(batch[3], paddle.float32))
- self.total_loss['cnt_loss'] = cnt_loss
- total_loss += cnt_loss
- if seq_outputs is not None:
- targets = batch[1].astype("int64")
- label_lengths = batch[2].astype('int64')
- batch_size, num_steps, num_classes = seq_outputs.shape[
- 0], seq_outputs.shape[1], seq_outputs.shape[2]
- assert len(targets.shape) == len(list(seq_outputs.shape)) - 1, \
- "The target's shape and inputs's shape is [N, d] and [N, num_steps]"
- inputs = seq_outputs[:, :-1, :]
- targets = targets[:, 1:]
- inputs = paddle.reshape(inputs, [-1, inputs.shape[-1]])
- targets = paddle.reshape(targets, [-1])
- seq_loss = self.seq_loss(inputs, targets)
- self.total_loss['seq_loss'] = seq_loss
- total_loss += seq_loss
- self.total_loss['loss'] = total_loss
- return self.total_loss
|