123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- #copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn import L1Loss
- from paddle.nn import MSELoss as L2Loss
- from paddle.nn import SmoothL1Loss
- class CELoss(nn.Layer):
- def __init__(self, epsilon=None):
- super().__init__()
- if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
- epsilon = None
- self.epsilon = epsilon
- def _labelsmoothing(self, target, class_num):
- if target.shape[-1] != class_num:
- one_hot_target = F.one_hot(target, class_num)
- else:
- one_hot_target = target
- soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
- soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
- return soft_target
- def forward(self, x, label):
- loss_dict = {}
- if self.epsilon is not None:
- class_num = x.shape[-1]
- label = self._labelsmoothing(label, class_num)
- x = -F.log_softmax(x, axis=-1)
- loss = paddle.sum(x * label, axis=-1)
- else:
- if label.shape[-1] == x.shape[-1]:
- label = F.softmax(label, axis=-1)
- soft_label = True
- else:
- soft_label = False
- loss = F.cross_entropy(x, label=label, soft_label=soft_label)
- return loss
- class KLJSLoss(object):
- def __init__(self, mode='kl'):
- assert mode in ['kl', 'js', 'KL', 'JS'
- ], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
- self.mode = mode
- def __call__(self, p1, p2, reduction="mean", eps=1e-5):
- if self.mode.lower() == 'kl':
- loss = paddle.multiply(p2,
- paddle.log((p2 + eps) / (p1 + eps) + eps))
- loss += paddle.multiply(p1,
- paddle.log((p1 + eps) / (p2 + eps) + eps))
- loss *= 0.5
- elif self.mode.lower() == "js":
- loss = paddle.multiply(
- p2, paddle.log((2 * p2 + eps) / (p1 + p2 + eps) + eps))
- loss += paddle.multiply(
- p1, paddle.log((2 * p1 + eps) / (p1 + p2 + eps) + eps))
- loss *= 0.5
- else:
- raise ValueError(
- "The mode.lower() if KLJSLoss should be one of ['kl', 'js']")
- if reduction == "mean":
- loss = paddle.mean(loss, axis=[1, 2])
- elif reduction == "none" or reduction is None:
- return loss
- else:
- loss = paddle.sum(loss, axis=[1, 2])
- return loss
- class DMLLoss(nn.Layer):
- """
- DMLLoss
- """
- def __init__(self, act=None, use_log=False):
- super().__init__()
- if act is not None:
- assert act in ["softmax", "sigmoid"]
- if act == "softmax":
- self.act = nn.Softmax(axis=-1)
- elif act == "sigmoid":
- self.act = nn.Sigmoid()
- else:
- self.act = None
- self.use_log = use_log
- self.jskl_loss = KLJSLoss(mode="kl")
- def _kldiv(self, x, target):
- eps = 1.0e-10
- loss = target * (paddle.log(target + eps) - x)
- # batch mean loss
- loss = paddle.sum(loss) / loss.shape[0]
- return loss
- def forward(self, out1, out2):
- if self.act is not None:
- out1 = self.act(out1) + 1e-10
- out2 = self.act(out2) + 1e-10
- if self.use_log:
- # for recognition distillation, log is needed for feature map
- log_out1 = paddle.log(out1)
- log_out2 = paddle.log(out2)
- loss = (
- self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
- else:
- # for detection distillation log is not needed
- loss = self.jskl_loss(out1, out2)
- return loss
- class DistanceLoss(nn.Layer):
- """
- DistanceLoss:
- mode: loss mode
- """
- def __init__(self, mode="l2", **kargs):
- super().__init__()
- assert mode in ["l1", "l2", "smooth_l1"]
- if mode == "l1":
- self.loss_func = nn.L1Loss(**kargs)
- elif mode == "l2":
- self.loss_func = nn.MSELoss(**kargs)
- elif mode == "smooth_l1":
- self.loss_func = nn.SmoothL1Loss(**kargs)
- def forward(self, x, y):
- return self.loss_func(x, y)
- class LossFromOutput(nn.Layer):
- def __init__(self, key='loss', reduction='none'):
- super().__init__()
- self.key = key
- self.reduction = reduction
- def forward(self, predicts, batch):
- loss = predicts
- if self.key is not None and isinstance(predicts, dict):
- loss = loss[self.key]
- if self.reduction == 'mean':
- loss = paddle.mean(loss)
- elif self.reduction == 'sum':
- loss = paddle.sum(loss)
- return {'loss': loss}
|