12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # This code is refer from: https://github.com/viig99/LS-ACELoss
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- class ACELoss(nn.Layer):
- def __init__(self, **kwargs):
- super().__init__()
- self.loss_func = nn.CrossEntropyLoss(
- weight=None,
- ignore_index=0,
- reduction='none',
- soft_label=True,
- axis=-1)
- def __call__(self, predicts, batch):
- if isinstance(predicts, (list, tuple)):
- predicts = predicts[-1]
- B, N = predicts.shape[:2]
- div = paddle.to_tensor([N]).astype('float32')
- predicts = nn.functional.softmax(predicts, axis=-1)
- aggregation_preds = paddle.sum(predicts, axis=1)
- aggregation_preds = paddle.divide(aggregation_preds, div)
- length = batch[2].astype("float32")
- batch = batch[3].astype("float32")
- batch[:, 0] = paddle.subtract(div, length)
- batch = paddle.divide(batch, div)
- loss = self.loss_func(aggregation_preds, batch)
- return {"loss_ace": loss}
|