123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- """
- This part code is refered from:
- https://github.com/songdejia/EAST/blob/master/data_utils.py
- """
- import math
- import cv2
- import numpy as np
- import json
- import sys
- import os
- __all__ = ['SASTProcessTrain']
- class SASTProcessTrain(object):
- def __init__(self,
- image_shape=[512, 512],
- min_crop_size=24,
- min_crop_side_ratio=0.3,
- min_text_size=10,
- max_text_size=512,
- **kwargs):
- self.input_size = image_shape[1]
- self.min_crop_size = min_crop_size
- self.min_crop_side_ratio = min_crop_side_ratio
- self.min_text_size = min_text_size
- self.max_text_size = max_text_size
- def quad_area(self, poly):
- """
- compute area of a polygon
- :param poly:
- :return:
- """
- edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
- (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
- (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
- (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
- return np.sum(edge) / 2.
- def gen_quad_from_poly(self, poly):
- """
- Generate min area quad from poly.
- """
- point_num = poly.shape[0]
- min_area_quad = np.zeros((4, 2), dtype=np.float32)
- if True:
- rect = cv2.minAreaRect(poly.astype(
- np.int32)) # (center (x,y), (width, height), angle of rotation)
- center_point = rect[0]
- box = np.array(cv2.boxPoints(rect))
- first_point_idx = 0
- min_dist = 1e4
- for i in range(4):
- dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
- np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
- np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
- np.linalg.norm(box[(i + 3) % 4] - poly[-1])
- if dist < min_dist:
- min_dist = dist
- first_point_idx = i
- for i in range(4):
- min_area_quad[i] = box[(first_point_idx + i) % 4]
- return min_area_quad
- def check_and_validate_polys(self, polys, tags, xxx_todo_changeme):
- """
- check so that the text poly is in the same direction,
- and also filter some invalid polygons
- :param polys:
- :param tags:
- :return:
- """
- (h, w) = xxx_todo_changeme
- if polys.shape[0] == 0:
- return polys, np.array([]), np.array([])
- polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
- polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
- validated_polys = []
- validated_tags = []
- hv_tags = []
- for poly, tag in zip(polys, tags):
- quad = self.gen_quad_from_poly(poly)
- p_area = self.quad_area(quad)
- if abs(p_area) < 1:
- print('invalid poly')
- continue
- if p_area > 0:
- if tag == False:
- print('poly in wrong direction')
- tag = True # reversed cases should be ignore
- poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
- 1), :]
- quad = quad[(0, 3, 2, 1), :]
- len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] -
- quad[2])
- len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] -
- quad[2])
- hv_tag = 1
- if len_w * 2.0 < len_h:
- hv_tag = 0
- validated_polys.append(poly)
- validated_tags.append(tag)
- hv_tags.append(hv_tag)
- return np.array(validated_polys), np.array(validated_tags), np.array(
- hv_tags)
- def crop_area(self,
- im,
- polys,
- tags,
- hv_tags,
- crop_background=False,
- max_tries=25):
- """
- make random crop from the input image
- :param im:
- :param polys:
- :param tags:
- :param crop_background:
- :param max_tries: 50 -> 25
- :return:
- """
- h, w, _ = im.shape
- pad_h = h // 10
- pad_w = w // 10
- h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
- w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
- for poly in polys:
- poly = np.round(poly, decimals=0).astype(np.int32)
- minx = np.min(poly[:, 0])
- maxx = np.max(poly[:, 0])
- w_array[minx + pad_w:maxx + pad_w] = 1
- miny = np.min(poly[:, 1])
- maxy = np.max(poly[:, 1])
- h_array[miny + pad_h:maxy + pad_h] = 1
- # ensure the cropped area not across a text
- h_axis = np.where(h_array == 0)[0]
- w_axis = np.where(w_array == 0)[0]
- if len(h_axis) == 0 or len(w_axis) == 0:
- return im, polys, tags, hv_tags
- for i in range(max_tries):
- xx = np.random.choice(w_axis, size=2)
- xmin = np.min(xx) - pad_w
- xmax = np.max(xx) - pad_w
- xmin = np.clip(xmin, 0, w - 1)
- xmax = np.clip(xmax, 0, w - 1)
- yy = np.random.choice(h_axis, size=2)
- ymin = np.min(yy) - pad_h
- ymax = np.max(yy) - pad_h
- ymin = np.clip(ymin, 0, h - 1)
- ymax = np.clip(ymax, 0, h - 1)
- # if xmax - xmin < ARGS.min_crop_side_ratio * w or \
- # ymax - ymin < ARGS.min_crop_side_ratio * h:
- if xmax - xmin < self.min_crop_size or \
- ymax - ymin < self.min_crop_size:
- # area too small
- continue
- if polys.shape[0] != 0:
- poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
- & (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
- selected_polys = np.where(
- np.sum(poly_axis_in_area, axis=1) == 4)[0]
- else:
- selected_polys = []
- if len(selected_polys) == 0:
- # no text in this area
- if crop_background:
- return im[ymin : ymax + 1, xmin : xmax + 1, :], \
- polys[selected_polys], tags[selected_polys], hv_tags[selected_polys]
- else:
- continue
- im = im[ymin:ymax + 1, xmin:xmax + 1, :]
- polys = polys[selected_polys]
- tags = tags[selected_polys]
- hv_tags = hv_tags[selected_polys]
- polys[:, :, 0] -= xmin
- polys[:, :, 1] -= ymin
- return im, polys, tags, hv_tags
- return im, polys, tags, hv_tags
- def generate_direction_map(self, poly_quads, direction_map):
- """
- """
- width_list = []
- height_list = []
- for quad in poly_quads:
- quad_w = (np.linalg.norm(quad[0] - quad[1]) +
- np.linalg.norm(quad[2] - quad[3])) / 2.0
- quad_h = (np.linalg.norm(quad[0] - quad[3]) +
- np.linalg.norm(quad[2] - quad[1])) / 2.0
- width_list.append(quad_w)
- height_list.append(quad_h)
- norm_width = max(sum(width_list) / (len(width_list) + 1e-6), 1.0)
- average_height = max(sum(height_list) / (len(height_list) + 1e-6), 1.0)
- for quad in poly_quads:
- direct_vector_full = (
- (quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
- direct_vector = direct_vector_full / (
- np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
- direction_label = tuple(
- map(float, [
- direct_vector[0], direct_vector[1], 1.0 / (average_height +
- 1e-6)
- ]))
- cv2.fillPoly(direction_map,
- quad.round().astype(np.int32)[np.newaxis, :, :],
- direction_label)
- return direction_map
- def calculate_average_height(self, poly_quads):
- """
- """
- height_list = []
- for quad in poly_quads:
- quad_h = (np.linalg.norm(quad[0] - quad[3]) +
- np.linalg.norm(quad[2] - quad[1])) / 2.0
- height_list.append(quad_h)
- average_height = max(sum(height_list) / len(height_list), 1.0)
- return average_height
- def generate_tcl_label(self,
- hw,
- polys,
- tags,
- ds_ratio,
- tcl_ratio=0.3,
- shrink_ratio_of_width=0.15):
- """
- Generate polygon.
- """
- h, w = hw
- h, w = int(h * ds_ratio), int(w * ds_ratio)
- polys = polys * ds_ratio
- score_map = np.zeros(
- (
- h,
- w, ), dtype=np.float32)
- tbo_map = np.zeros((h, w, 5), dtype=np.float32)
- training_mask = np.ones(
- (
- h,
- w, ), dtype=np.float32)
- direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape(
- [1, 1, 3]).astype(np.float32)
- for poly_idx, poly_tag in enumerate(zip(polys, tags)):
- poly = poly_tag[0]
- tag = poly_tag[1]
- # generate min_area_quad
- min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
- min_area_quad_h = 0.5 * (
- np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
- np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
- min_area_quad_w = 0.5 * (
- np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
- np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
- if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
- or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
- continue
- if tag:
- # continue
- cv2.fillPoly(training_mask,
- poly.astype(np.int32)[np.newaxis, :, :], 0.15)
- else:
- tcl_poly = self.poly2tcl(poly, tcl_ratio)
- tcl_quads = self.poly2quads(tcl_poly)
- poly_quads = self.poly2quads(poly)
- # stcl map
- stcl_quads, quad_index = self.shrink_poly_along_width(
- tcl_quads,
- shrink_ratio_of_width=shrink_ratio_of_width,
- expand_height_ratio=1.0 / tcl_ratio)
- # generate tcl map
- cv2.fillPoly(score_map,
- np.round(stcl_quads).astype(np.int32), 1.0)
- # generate tbo map
- for idx, quad in enumerate(stcl_quads):
- quad_mask = np.zeros((h, w), dtype=np.float32)
- quad_mask = cv2.fillPoly(
- quad_mask,
- np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
- tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]],
- quad_mask, tbo_map)
- return score_map, tbo_map, training_mask
- def generate_tvo_and_tco(self,
- hw,
- polys,
- tags,
- tcl_ratio=0.3,
- ds_ratio=0.25):
- """
- Generate tcl map, tvo map and tbo map.
- """
- h, w = hw
- h, w = int(h * ds_ratio), int(w * ds_ratio)
- polys = polys * ds_ratio
- poly_mask = np.zeros((h, w), dtype=np.float32)
- tvo_map = np.ones((9, h, w), dtype=np.float32)
- tvo_map[0:-1:2] = np.tile(np.arange(0, w), (h, 1))
- tvo_map[1:-1:2] = np.tile(np.arange(0, w), (h, 1)).T
- poly_tv_xy_map = np.zeros((8, h, w), dtype=np.float32)
- # tco map
- tco_map = np.ones((3, h, w), dtype=np.float32)
- tco_map[0] = np.tile(np.arange(0, w), (h, 1))
- tco_map[1] = np.tile(np.arange(0, w), (h, 1)).T
- poly_tc_xy_map = np.zeros((2, h, w), dtype=np.float32)
- poly_short_edge_map = np.ones((h, w), dtype=np.float32)
- for poly, poly_tag in zip(polys, tags):
- if poly_tag == True:
- continue
- # adjust point order for vertical poly
- poly = self.adjust_point(poly)
- # generate min_area_quad
- min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
- min_area_quad_h = 0.5 * (
- np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
- np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
- min_area_quad_w = 0.5 * (
- np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
- np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
- # generate tcl map and text, 128 * 128
- tcl_poly = self.poly2tcl(poly, tcl_ratio)
- # generate poly_tv_xy_map
- for idx in range(4):
- cv2.fillPoly(
- poly_tv_xy_map[2 * idx],
- np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
- float(min(max(min_area_quad[idx, 0], 0), w)))
- cv2.fillPoly(
- poly_tv_xy_map[2 * idx + 1],
- np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
- float(min(max(min_area_quad[idx, 1], 0), h)))
- # generate poly_tc_xy_map
- for idx in range(2):
- cv2.fillPoly(
- poly_tc_xy_map[idx],
- np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
- float(center_point[idx]))
- # generate poly_short_edge_map
- cv2.fillPoly(
- poly_short_edge_map,
- np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
- float(max(min(min_area_quad_h, min_area_quad_w), 1.0)))
- # generate poly_mask and training_mask
- cv2.fillPoly(poly_mask,
- np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
- 1)
- tvo_map *= poly_mask
- tvo_map[:8] -= poly_tv_xy_map
- tvo_map[-1] /= poly_short_edge_map
- tvo_map = tvo_map.transpose((1, 2, 0))
- tco_map *= poly_mask
- tco_map[:2] -= poly_tc_xy_map
- tco_map[-1] /= poly_short_edge_map
- tco_map = tco_map.transpose((1, 2, 0))
- return tvo_map, tco_map
- def adjust_point(self, poly):
- """
- adjust point order.
- """
- point_num = poly.shape[0]
- if point_num == 4:
- len_1 = np.linalg.norm(poly[0] - poly[1])
- len_2 = np.linalg.norm(poly[1] - poly[2])
- len_3 = np.linalg.norm(poly[2] - poly[3])
- len_4 = np.linalg.norm(poly[3] - poly[0])
- if (len_1 + len_3) * 1.5 < (len_2 + len_4):
- poly = poly[[1, 2, 3, 0], :]
- elif point_num > 4:
- vector_1 = poly[0] - poly[1]
- vector_2 = poly[1] - poly[2]
- cos_theta = np.dot(vector_1, vector_2) / (
- np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
- theta = np.arccos(np.round(cos_theta, decimals=4))
- if abs(theta) > (70 / 180 * math.pi):
- index = list(range(1, point_num)) + [0]
- poly = poly[np.array(index), :]
- return poly
- def gen_min_area_quad_from_poly(self, poly):
- """
- Generate min area quad from poly.
- """
- point_num = poly.shape[0]
- min_area_quad = np.zeros((4, 2), dtype=np.float32)
- if point_num == 4:
- min_area_quad = poly
- center_point = np.sum(poly, axis=0) / 4
- else:
- rect = cv2.minAreaRect(poly.astype(
- np.int32)) # (center (x,y), (width, height), angle of rotation)
- center_point = rect[0]
- box = np.array(cv2.boxPoints(rect))
- first_point_idx = 0
- min_dist = 1e4
- for i in range(4):
- dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
- np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
- np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
- np.linalg.norm(box[(i + 3) % 4] - poly[-1])
- if dist < min_dist:
- min_dist = dist
- first_point_idx = i
- for i in range(4):
- min_area_quad[i] = box[(first_point_idx + i) % 4]
- return min_area_quad, center_point
- def shrink_quad_along_width(self,
- quad,
- begin_width_ratio=0.,
- end_width_ratio=1.):
- """
- Generate shrink_quad_along_width.
- """
- ratio_pair = np.array(
- [[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
- p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
- p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
- return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
- def shrink_poly_along_width(self,
- quads,
- shrink_ratio_of_width,
- expand_height_ratio=1.0):
- """
- shrink poly with given length.
- """
- upper_edge_list = []
- def get_cut_info(edge_len_list, cut_len):
- for idx, edge_len in enumerate(edge_len_list):
- cut_len -= edge_len
- if cut_len <= 0.000001:
- ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx]
- return idx, ratio
- for quad in quads:
- upper_edge_len = np.linalg.norm(quad[0] - quad[1])
- upper_edge_list.append(upper_edge_len)
- # length of left edge and right edge.
- left_length = np.linalg.norm(quads[0][0] - quads[0][
- 3]) * expand_height_ratio
- right_length = np.linalg.norm(quads[-1][1] - quads[-1][
- 2]) * expand_height_ratio
- shrink_length = min(left_length, right_length,
- sum(upper_edge_list)) * shrink_ratio_of_width
- # shrinking length
- upper_len_left = shrink_length
- upper_len_right = sum(upper_edge_list) - shrink_length
- left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
- left_quad = self.shrink_quad_along_width(
- quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
- right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
- right_quad = self.shrink_quad_along_width(
- quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
- out_quad_list = []
- if left_idx == right_idx:
- out_quad_list.append(
- [left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
- else:
- out_quad_list.append(left_quad)
- for idx in range(left_idx + 1, right_idx):
- out_quad_list.append(quads[idx])
- out_quad_list.append(right_quad)
- return np.array(out_quad_list), list(range(left_idx, right_idx + 1))
- def vector_angle(self, A, B):
- """
- Calculate the angle between vector AB and x-axis positive direction.
- """
- AB = np.array([B[1] - A[1], B[0] - A[0]])
- return np.arctan2(*AB)
- def theta_line_cross_point(self, theta, point):
- """
- Calculate the line through given point and angle in ax + by + c =0 form.
- """
- x, y = point
- cos = np.cos(theta)
- sin = np.sin(theta)
- return [sin, -cos, cos * y - sin * x]
- def line_cross_two_point(self, A, B):
- """
- Calculate the line through given point A and B in ax + by + c =0 form.
- """
- angle = self.vector_angle(A, B)
- return self.theta_line_cross_point(angle, A)
- def average_angle(self, poly):
- """
- Calculate the average angle between left and right edge in given poly.
- """
- p0, p1, p2, p3 = poly
- angle30 = self.vector_angle(p3, p0)
- angle21 = self.vector_angle(p2, p1)
- return (angle30 + angle21) / 2
- def line_cross_point(self, line1, line2):
- """
- line1 and line2 in 0=ax+by+c form, compute the cross point of line1 and line2
- """
- a1, b1, c1 = line1
- a2, b2, c2 = line2
- d = a1 * b2 - a2 * b1
- if d == 0:
- #print("line1", line1)
- #print("line2", line2)
- print('Cross point does not exist')
- return np.array([0, 0], dtype=np.float32)
- else:
- x = (b1 * c2 - b2 * c1) / d
- y = (a2 * c1 - a1 * c2) / d
- return np.array([x, y], dtype=np.float32)
- def quad2tcl(self, poly, ratio):
- """
- Generate center line by poly clock-wise point. (4, 2)
- """
- ratio_pair = np.array(
- [[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
- p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
- p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
- return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
- def poly2tcl(self, poly, ratio):
- """
- Generate center line by poly clock-wise point.
- """
- ratio_pair = np.array(
- [[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
- tcl_poly = np.zeros_like(poly)
- point_num = poly.shape[0]
- for idx in range(point_num // 2):
- point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]
- ) * ratio_pair
- tcl_poly[idx] = point_pair[0]
- tcl_poly[point_num - 1 - idx] = point_pair[1]
- return tcl_poly
- def gen_quad_tbo(self, quad, tcl_mask, tbo_map):
- """
- Generate tbo_map for give quad.
- """
- # upper and lower line function: ax + by + c = 0;
- up_line = self.line_cross_two_point(quad[0], quad[1])
- lower_line = self.line_cross_two_point(quad[3], quad[2])
- quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) +
- np.linalg.norm(quad[1] - quad[2]))
- quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) +
- np.linalg.norm(quad[2] - quad[3]))
- # average angle of left and right line.
- angle = self.average_angle(quad)
- xy_in_poly = np.argwhere(tcl_mask == 1)
- for y, x in xy_in_poly:
- point = (x, y)
- line = self.theta_line_cross_point(angle, point)
- cross_point_upper = self.line_cross_point(up_line, line)
- cross_point_lower = self.line_cross_point(lower_line, line)
- ##FIX, offset reverse
- upper_offset_x, upper_offset_y = cross_point_upper - point
- lower_offset_x, lower_offset_y = cross_point_lower - point
- tbo_map[y, x, 0] = upper_offset_y
- tbo_map[y, x, 1] = upper_offset_x
- tbo_map[y, x, 2] = lower_offset_y
- tbo_map[y, x, 3] = lower_offset_x
- tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2
- return tbo_map
- def poly2quads(self, poly):
- """
- Split poly into quads.
- """
- quad_list = []
- point_num = poly.shape[0]
- # point pair
- point_pair_list = []
- for idx in range(point_num // 2):
- point_pair = [poly[idx], poly[point_num - 1 - idx]]
- point_pair_list.append(point_pair)
- quad_num = point_num // 2 - 1
- for idx in range(quad_num):
- # reshape and adjust to clock-wise
- quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]
- ).reshape(4, 2)[[0, 2, 3, 1]])
- return np.array(quad_list)
- def __call__(self, data):
- im = data['image']
- text_polys = data['polys']
- text_tags = data['ignore_tags']
- if im is None:
- return None
- if text_polys.shape[0] == 0:
- return None
- h, w, _ = im.shape
- text_polys, text_tags, hv_tags = self.check_and_validate_polys(
- text_polys, text_tags, (h, w))
- if text_polys.shape[0] == 0:
- return None
- #set aspect ratio and keep area fix
- asp_scales = np.arange(1.0, 1.55, 0.1)
- asp_scale = np.random.choice(asp_scales)
- if np.random.rand() < 0.5:
- asp_scale = 1.0 / asp_scale
- asp_scale = math.sqrt(asp_scale)
- asp_wx = asp_scale
- asp_hy = 1.0 / asp_scale
- im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
- text_polys[:, :, 0] *= asp_wx
- text_polys[:, :, 1] *= asp_hy
- h, w, _ = im.shape
- if max(h, w) > 2048:
- rd_scale = 2048.0 / max(h, w)
- im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
- text_polys *= rd_scale
- h, w, _ = im.shape
- if min(h, w) < 16:
- return None
- #no background
- im, text_polys, text_tags, hv_tags = self.crop_area(im, \
- text_polys, text_tags, hv_tags, crop_background=False)
- if text_polys.shape[0] == 0:
- return None
- #continue for all ignore case
- if np.sum((text_tags * 1.0)) >= text_tags.size:
- return None
- new_h, new_w, _ = im.shape
- if (new_h is None) or (new_w is None):
- return None
- #resize image
- std_ratio = float(self.input_size) / max(new_w, new_h)
- rand_scales = np.array(
- [0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
- rz_scale = std_ratio * np.random.choice(rand_scales)
- im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
- text_polys[:, :, 0] *= rz_scale
- text_polys[:, :, 1] *= rz_scale
- #add gaussian blur
- if np.random.rand() < 0.1 * 0.5:
- ks = np.random.permutation(5)[0] + 1
- ks = int(ks / 2) * 2 + 1
- im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
- #add brighter
- if np.random.rand() < 0.1 * 0.5:
- im = im * (1.0 + np.random.rand() * 0.5)
- im = np.clip(im, 0.0, 255.0)
- #add darker
- if np.random.rand() < 0.1 * 0.5:
- im = im * (1.0 - np.random.rand() * 0.5)
- im = np.clip(im, 0.0, 255.0)
- # Padding the im to [input_size, input_size]
- new_h, new_w, _ = im.shape
- if min(new_w, new_h) < self.input_size * 0.5:
- return None
- im_padded = np.ones(
- (self.input_size, self.input_size, 3), dtype=np.float32)
- im_padded[:, :, 2] = 0.485 * 255
- im_padded[:, :, 1] = 0.456 * 255
- im_padded[:, :, 0] = 0.406 * 255
- # Random the start position
- del_h = self.input_size - new_h
- del_w = self.input_size - new_w
- sh, sw = 0, 0
- if del_h > 1:
- sh = int(np.random.rand() * del_h)
- if del_w > 1:
- sw = int(np.random.rand() * del_w)
- # Padding
- im_padded[sh:sh + new_h, sw:sw + new_w, :] = im.copy()
- text_polys[:, :, 0] += sw
- text_polys[:, :, 1] += sh
- score_map, border_map, training_mask = self.generate_tcl_label(
- (self.input_size, self.input_size), text_polys, text_tags, 0.25)
- # SAST head
- tvo_map, tco_map = self.generate_tvo_and_tco(
- (self.input_size, self.input_size),
- text_polys,
- text_tags,
- tcl_ratio=0.3,
- ds_ratio=0.25)
- # print("test--------tvo_map shape:", tvo_map.shape)
- im_padded[:, :, 2] -= 0.485 * 255
- im_padded[:, :, 1] -= 0.456 * 255
- im_padded[:, :, 0] -= 0.406 * 255
- im_padded[:, :, 2] /= (255.0 * 0.229)
- im_padded[:, :, 1] /= (255.0 * 0.224)
- im_padded[:, :, 0] /= (255.0 * 0.225)
- im_padded = im_padded.transpose((2, 0, 1))
- data['image'] = im_padded[::-1, :, :]
- data['score_map'] = score_map[np.newaxis, :, :]
- data['border_map'] = border_map.transpose((2, 0, 1))
- data['training_mask'] = training_mask[np.newaxis, :, :]
- data['tvo_map'] = tvo_map.transpose((2, 0, 1))
- data['tco_map'] = tco_map.transpose((2, 0, 1))
- return data
|