123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import cv2
- import numpy as np
- import random
- import copy
- from PIL import Image
- from .text_image_aug import tia_perspective, tia_stretch, tia_distort
- from .abinet_aug import CVGeometry, CVDeterioration, CVColorJitter, SVTRGeometry, SVTRDeterioration
- from paddle.vision.transforms import Compose
- class RecAug(object):
- def __init__(self,
- tia_prob=0.4,
- crop_prob=0.4,
- reverse_prob=0.4,
- noise_prob=0.4,
- jitter_prob=0.4,
- blur_prob=0.4,
- hsv_aug_prob=0.4,
- **kwargs):
- self.tia_prob = tia_prob
- self.bda = BaseDataAugmentation(crop_prob, reverse_prob, noise_prob,
- jitter_prob, blur_prob, hsv_aug_prob)
- def __call__(self, data):
- img = data['image']
- h, w, _ = img.shape
- # tia
- if random.random() <= self.tia_prob:
- if h >= 20 and w >= 20:
- img = tia_distort(img, random.randint(3, 6))
- img = tia_stretch(img, random.randint(3, 6))
- img = tia_perspective(img)
- # bda
- data['image'] = img
- data = self.bda(data)
- return data
- class BaseDataAugmentation(object):
- def __init__(self,
- crop_prob=0.4,
- reverse_prob=0.4,
- noise_prob=0.4,
- jitter_prob=0.4,
- blur_prob=0.4,
- hsv_aug_prob=0.4,
- **kwargs):
- self.crop_prob = crop_prob
- self.reverse_prob = reverse_prob
- self.noise_prob = noise_prob
- self.jitter_prob = jitter_prob
- self.blur_prob = blur_prob
- self.hsv_aug_prob = hsv_aug_prob
- def __call__(self, data):
- img = data['image']
- h, w, _ = img.shape
- if random.random() <= self.crop_prob and h >= 20 and w >= 20:
- img = get_crop(img)
- if random.random() <= self.blur_prob:
- img = blur(img)
- if random.random() <= self.hsv_aug_prob:
- img = hsv_aug(img)
- if random.random() <= self.jitter_prob:
- img = jitter(img)
- if random.random() <= self.noise_prob:
- img = add_gasuss_noise(img)
- if random.random() <= self.reverse_prob:
- img = 255 - img
- data['image'] = img
- return data
- class ABINetRecAug(object):
- def __init__(self,
- geometry_p=0.5,
- deterioration_p=0.25,
- colorjitter_p=0.25,
- **kwargs):
- self.transforms = Compose([
- CVGeometry(
- degrees=45,
- translate=(0.0, 0.0),
- scale=(0.5, 2.),
- shear=(45, 15),
- distortion=0.5,
- p=geometry_p), CVDeterioration(
- var=20, degrees=6, factor=4, p=deterioration_p),
- CVColorJitter(
- brightness=0.5,
- contrast=0.5,
- saturation=0.5,
- hue=0.1,
- p=colorjitter_p)
- ])
- def __call__(self, data):
- img = data['image']
- img = self.transforms(img)
- data['image'] = img
- return data
- class RecConAug(object):
- def __init__(self,
- prob=0.5,
- image_shape=(32, 320, 3),
- max_text_length=25,
- ext_data_num=1,
- **kwargs):
- self.ext_data_num = ext_data_num
- self.prob = prob
- self.max_text_length = max_text_length
- self.image_shape = image_shape
- self.max_wh_ratio = self.image_shape[1] / self.image_shape[0]
- def merge_ext_data(self, data, ext_data):
- ori_w = round(data['image'].shape[1] / data['image'].shape[0] *
- self.image_shape[0])
- ext_w = round(ext_data['image'].shape[1] / ext_data['image'].shape[0] *
- self.image_shape[0])
- data['image'] = cv2.resize(data['image'], (ori_w, self.image_shape[0]))
- ext_data['image'] = cv2.resize(ext_data['image'],
- (ext_w, self.image_shape[0]))
- data['image'] = np.concatenate(
- [data['image'], ext_data['image']], axis=1)
- data["label"] += ext_data["label"]
- return data
- def __call__(self, data):
- rnd_num = random.random()
- if rnd_num > self.prob:
- return data
- for idx, ext_data in enumerate(data["ext_data"]):
- if len(data["label"]) + len(ext_data[
- "label"]) > self.max_text_length:
- break
- concat_ratio = data['image'].shape[1] / data['image'].shape[
- 0] + ext_data['image'].shape[1] / ext_data['image'].shape[0]
- if concat_ratio > self.max_wh_ratio:
- break
- data = self.merge_ext_data(data, ext_data)
- data.pop("ext_data")
- return data
- class SVTRRecAug(object):
- def __init__(self,
- aug_type=0,
- geometry_p=0.5,
- deterioration_p=0.25,
- colorjitter_p=0.25,
- **kwargs):
- self.transforms = Compose([
- SVTRGeometry(
- aug_type=aug_type,
- degrees=45,
- translate=(0.0, 0.0),
- scale=(0.5, 2.),
- shear=(45, 15),
- distortion=0.5,
- p=geometry_p), SVTRDeterioration(
- var=20, degrees=6, factor=4, p=deterioration_p),
- CVColorJitter(
- brightness=0.5,
- contrast=0.5,
- saturation=0.5,
- hue=0.1,
- p=colorjitter_p)
- ])
- def __call__(self, data):
- img = data['image']
- img = self.transforms(img)
- data['image'] = img
- return data
- class ClsResizeImg(object):
- def __init__(self, image_shape, **kwargs):
- self.image_shape = image_shape
- def __call__(self, data):
- img = data['image']
- norm_img, _ = resize_norm_img(img, self.image_shape)
- data['image'] = norm_img
- return data
- class RecResizeImg(object):
- def __init__(self,
- image_shape,
- infer_mode=False,
- character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
- padding=True,
- **kwargs):
- self.image_shape = image_shape
- self.infer_mode = infer_mode
- self.character_dict_path = character_dict_path
- self.padding = padding
- def __call__(self, data):
- img = data['image']
- if self.infer_mode and self.character_dict_path is not None:
- norm_img, valid_ratio = resize_norm_img_chinese(img,
- self.image_shape)
- else:
- norm_img, valid_ratio = resize_norm_img(img, self.image_shape,
- self.padding)
- data['image'] = norm_img
- data['valid_ratio'] = valid_ratio
- return data
- class VLRecResizeImg(object):
- def __init__(self,
- image_shape,
- infer_mode=False,
- character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
- padding=True,
- **kwargs):
- self.image_shape = image_shape
- self.infer_mode = infer_mode
- self.character_dict_path = character_dict_path
- self.padding = padding
- def __call__(self, data):
- img = data['image']
- imgC, imgH, imgW = self.image_shape
- resized_image = cv2.resize(
- img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
- resized_w = imgW
- resized_image = resized_image.astype('float32')
- if self.image_shape[0] == 1:
- resized_image = resized_image / 255
- norm_img = resized_image[np.newaxis, :]
- else:
- norm_img = resized_image.transpose((2, 0, 1)) / 255
- valid_ratio = min(1.0, float(resized_w / imgW))
- data['image'] = norm_img
- data['valid_ratio'] = valid_ratio
- return data
- class RFLRecResizeImg(object):
- def __init__(self, image_shape, padding=True, interpolation=1, **kwargs):
- self.image_shape = image_shape
- self.padding = padding
- self.interpolation = interpolation
- if self.interpolation == 0:
- self.interpolation = cv2.INTER_NEAREST
- elif self.interpolation == 1:
- self.interpolation = cv2.INTER_LINEAR
- elif self.interpolation == 2:
- self.interpolation = cv2.INTER_CUBIC
- elif self.interpolation == 3:
- self.interpolation = cv2.INTER_AREA
- else:
- raise Exception("Unsupported interpolation type !!!")
- def __call__(self, data):
- img = data['image']
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- norm_img, valid_ratio = resize_norm_img(
- img, self.image_shape, self.padding, self.interpolation)
- data['image'] = norm_img
- data['valid_ratio'] = valid_ratio
- return data
- class SRNRecResizeImg(object):
- def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
- self.image_shape = image_shape
- self.num_heads = num_heads
- self.max_text_length = max_text_length
- def __call__(self, data):
- img = data['image']
- norm_img = resize_norm_img_srn(img, self.image_shape)
- data['image'] = norm_img
- [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
- srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
- data['encoder_word_pos'] = encoder_word_pos
- data['gsrm_word_pos'] = gsrm_word_pos
- data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
- data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
- return data
- class SARRecResizeImg(object):
- def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
- self.image_shape = image_shape
- self.width_downsample_ratio = width_downsample_ratio
- def __call__(self, data):
- img = data['image']
- norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
- img, self.image_shape, self.width_downsample_ratio)
- data['image'] = norm_img
- data['resized_shape'] = resize_shape
- data['pad_shape'] = pad_shape
- data['valid_ratio'] = valid_ratio
- return data
- class PRENResizeImg(object):
- def __init__(self, image_shape, **kwargs):
- """
- Accroding to original paper's realization, it's a hard resize method here.
- So maybe you should optimize it to fit for your task better.
- """
- self.dst_h, self.dst_w = image_shape
- def __call__(self, data):
- img = data['image']
- resized_img = cv2.resize(
- img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR)
- resized_img = resized_img.transpose((2, 0, 1)) / 255
- resized_img -= 0.5
- resized_img /= 0.5
- data['image'] = resized_img.astype(np.float32)
- return data
- class SPINRecResizeImg(object):
- def __init__(self,
- image_shape,
- interpolation=2,
- mean=(127.5, 127.5, 127.5),
- std=(127.5, 127.5, 127.5),
- **kwargs):
- self.image_shape = image_shape
- self.mean = np.array(mean, dtype=np.float32)
- self.std = np.array(std, dtype=np.float32)
- self.interpolation = interpolation
- def __call__(self, data):
- img = data['image']
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- # different interpolation type corresponding the OpenCV
- if self.interpolation == 0:
- interpolation = cv2.INTER_NEAREST
- elif self.interpolation == 1:
- interpolation = cv2.INTER_LINEAR
- elif self.interpolation == 2:
- interpolation = cv2.INTER_CUBIC
- elif self.interpolation == 3:
- interpolation = cv2.INTER_AREA
- else:
- raise Exception("Unsupported interpolation type !!!")
- # Deal with the image error during image loading
- if img is None:
- return None
- img = cv2.resize(img, tuple(self.image_shape), interpolation)
- img = np.array(img, np.float32)
- img = np.expand_dims(img, -1)
- img = img.transpose((2, 0, 1))
- # normalize the image
- img = img.copy().astype(np.float32)
- mean = np.float64(self.mean.reshape(1, -1))
- stdinv = 1 / np.float64(self.std.reshape(1, -1))
- img -= mean
- img *= stdinv
- data['image'] = img
- return data
- class GrayRecResizeImg(object):
- def __init__(self,
- image_shape,
- resize_type,
- inter_type='Image.ANTIALIAS',
- scale=True,
- padding=False,
- **kwargs):
- self.image_shape = image_shape
- self.resize_type = resize_type
- self.padding = padding
- self.inter_type = eval(inter_type)
- self.scale = scale
- def __call__(self, data):
- img = data['image']
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- image_shape = self.image_shape
- if self.padding:
- imgC, imgH, imgW = image_shape
- # todo: change to 0 and modified image shape
- h = img.shape[0]
- w = img.shape[1]
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- norm_img = np.expand_dims(resized_image, -1)
- norm_img = norm_img.transpose((2, 0, 1))
- resized_image = norm_img.astype(np.float32) / 128. - 1.
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- data['image'] = padding_im
- return data
- if self.resize_type == 'PIL':
- image_pil = Image.fromarray(np.uint8(img))
- img = image_pil.resize(self.image_shape, self.inter_type)
- img = np.array(img)
- if self.resize_type == 'OpenCV':
- img = cv2.resize(img, self.image_shape)
- norm_img = np.expand_dims(img, -1)
- norm_img = norm_img.transpose((2, 0, 1))
- if self.scale:
- data['image'] = norm_img.astype(np.float32) / 128. - 1.
- else:
- data['image'] = norm_img.astype(np.float32) / 255.
- return data
- class ABINetRecResizeImg(object):
- def __init__(self, image_shape, **kwargs):
- self.image_shape = image_shape
- def __call__(self, data):
- img = data['image']
- norm_img, valid_ratio = resize_norm_img_abinet(img, self.image_shape)
- data['image'] = norm_img
- data['valid_ratio'] = valid_ratio
- return data
- class SVTRRecResizeImg(object):
- def __init__(self, image_shape, padding=True, **kwargs):
- self.image_shape = image_shape
- self.padding = padding
- def __call__(self, data):
- img = data['image']
- norm_img, valid_ratio = resize_norm_img(img, self.image_shape,
- self.padding)
- data['image'] = norm_img
- data['valid_ratio'] = valid_ratio
- return data
- class RobustScannerRecResizeImg(object):
- def __init__(self,
- image_shape,
- max_text_length,
- width_downsample_ratio=0.25,
- **kwargs):
- self.image_shape = image_shape
- self.width_downsample_ratio = width_downsample_ratio
- self.max_text_length = max_text_length
- def __call__(self, data):
- img = data['image']
- norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
- img, self.image_shape, self.width_downsample_ratio)
- word_positons = np.array(range(0, self.max_text_length)).astype('int64')
- data['image'] = norm_img
- data['resized_shape'] = resize_shape
- data['pad_shape'] = pad_shape
- data['valid_ratio'] = valid_ratio
- data['word_positons'] = word_positons
- return data
- def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
- imgC, imgH, imgW_min, imgW_max = image_shape
- h = img.shape[0]
- w = img.shape[1]
- valid_ratio = 1.0
- # make sure new_width is an integral multiple of width_divisor.
- width_divisor = int(1 / width_downsample_ratio)
- # resize
- ratio = w / float(h)
- resize_w = math.ceil(imgH * ratio)
- if resize_w % width_divisor != 0:
- resize_w = round(resize_w / width_divisor) * width_divisor
- if imgW_min is not None:
- resize_w = max(imgW_min, resize_w)
- if imgW_max is not None:
- valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
- resize_w = min(imgW_max, resize_w)
- resized_image = cv2.resize(img, (resize_w, imgH))
- resized_image = resized_image.astype('float32')
- # norm
- if image_shape[0] == 1:
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- else:
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- resize_shape = resized_image.shape
- padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
- padding_im[:, :, 0:resize_w] = resized_image
- pad_shape = padding_im.shape
- return padding_im, resize_shape, pad_shape, valid_ratio
- def resize_norm_img(img,
- image_shape,
- padding=True,
- interpolation=cv2.INTER_LINEAR):
- imgC, imgH, imgW = image_shape
- h = img.shape[0]
- w = img.shape[1]
- if not padding:
- resized_image = cv2.resize(
- img, (imgW, imgH), interpolation=interpolation)
- resized_w = imgW
- else:
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- if image_shape[0] == 1:
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- else:
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- valid_ratio = min(1.0, float(resized_w / imgW))
- return padding_im, valid_ratio
- def resize_norm_img_chinese(img, image_shape):
- imgC, imgH, imgW = image_shape
- # todo: change to 0 and modified image shape
- max_wh_ratio = imgW * 1.0 / imgH
- h, w = img.shape[0], img.shape[1]
- ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, ratio)
- imgW = int(imgH * max_wh_ratio)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- if image_shape[0] == 1:
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- else:
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- valid_ratio = min(1.0, float(resized_w / imgW))
- return padding_im, valid_ratio
- def resize_norm_img_srn(img, image_shape):
- imgC, imgH, imgW = image_shape
- img_black = np.zeros((imgH, imgW))
- im_hei = img.shape[0]
- im_wid = img.shape[1]
- if im_wid <= im_hei * 1:
- img_new = cv2.resize(img, (imgH * 1, imgH))
- elif im_wid <= im_hei * 2:
- img_new = cv2.resize(img, (imgH * 2, imgH))
- elif im_wid <= im_hei * 3:
- img_new = cv2.resize(img, (imgH * 3, imgH))
- else:
- img_new = cv2.resize(img, (imgW, imgH))
- img_np = np.asarray(img_new)
- img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
- img_black[:, 0:img_np.shape[1]] = img_np
- img_black = img_black[:, :, np.newaxis]
- row, col, c = img_black.shape
- c = 1
- return np.reshape(img_black, (c, row, col)).astype(np.float32)
- def resize_norm_img_abinet(img, image_shape):
- imgC, imgH, imgW = image_shape
- resized_image = cv2.resize(
- img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
- resized_w = imgW
- resized_image = resized_image.astype('float32')
- resized_image = resized_image / 255.
- mean = np.array([0.485, 0.456, 0.406])
- std = np.array([0.229, 0.224, 0.225])
- resized_image = (
- resized_image - mean[None, None, ...]) / std[None, None, ...]
- resized_image = resized_image.transpose((2, 0, 1))
- resized_image = resized_image.astype('float32')
- valid_ratio = min(1.0, float(resized_w / imgW))
- return resized_image, valid_ratio
- def srn_other_inputs(image_shape, num_heads, max_text_length):
- imgC, imgH, imgW = image_shape
- feature_dim = int((imgH / 8) * (imgW / 8))
- encoder_word_pos = np.array(range(0, feature_dim)).reshape(
- (feature_dim, 1)).astype('int64')
- gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
- (max_text_length, 1)).astype('int64')
- gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
- gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
- [1, max_text_length, max_text_length])
- gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
- [num_heads, 1, 1]) * [-1e9]
- gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
- [1, max_text_length, max_text_length])
- gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
- [num_heads, 1, 1]) * [-1e9]
- return [
- encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
- gsrm_slf_attn_bias2
- ]
- def flag():
- """
- flag
- """
- return 1 if random.random() > 0.5000001 else -1
- def hsv_aug(img):
- """
- cvtColor
- """
- hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
- delta = 0.001 * random.random() * flag()
- hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
- new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
- return new_img
- def blur(img):
- """
- blur
- """
- h, w, _ = img.shape
- if h > 10 and w > 10:
- return cv2.GaussianBlur(img, (5, 5), 1)
- else:
- return img
- def jitter(img):
- """
- jitter
- """
- w, h, _ = img.shape
- if h > 10 and w > 10:
- thres = min(w, h)
- s = int(random.random() * thres * 0.01)
- src_img = img.copy()
- for i in range(s):
- img[i:, i:, :] = src_img[:w - i, :h - i, :]
- return img
- else:
- return img
- def add_gasuss_noise(image, mean=0, var=0.1):
- """
- Gasuss noise
- """
- noise = np.random.normal(mean, var**0.5, image.shape)
- out = image + 0.5 * noise
- out = np.clip(out, 0, 255)
- out = np.uint8(out)
- return out
- def get_crop(image):
- """
- random crop
- """
- h, w, _ = image.shape
- top_min = 1
- top_max = 8
- top_crop = int(random.randint(top_min, top_max))
- top_crop = min(top_crop, h - 1)
- crop_img = image.copy()
- ratio = random.randint(0, 1)
- if ratio:
- crop_img = crop_img[top_crop:h, :, :]
- else:
- crop_img = crop_img[0:h - top_crop, :, :]
- return crop_img
- def rad(x):
- """
- rad
- """
- return x * np.pi / 180
- def get_warpR(config):
- """
- get_warpR
- """
- anglex, angley, anglez, fov, w, h, r = \
- config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
- if w > 69 and w < 112:
- anglex = anglex * 1.5
- z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
- # Homogeneous coordinate transformation matrix
- rx = np.array([[1, 0, 0, 0],
- [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
- 0,
- -np.sin(rad(anglex)),
- np.cos(rad(anglex)),
- 0,
- ], [0, 0, 0, 1]], np.float32)
- ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
- [0, 1, 0, 0], [
- -np.sin(rad(angley)),
- 0,
- np.cos(rad(angley)),
- 0,
- ], [0, 0, 0, 1]], np.float32)
- rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
- [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
- [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
- r = rx.dot(ry).dot(rz)
- # generate 4 points
- pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
- p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
- p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
- p3 = np.array([0, h, 0, 0], np.float32) - pcenter
- p4 = np.array([w, h, 0, 0], np.float32) - pcenter
- dst1 = r.dot(p1)
- dst2 = r.dot(p2)
- dst3 = r.dot(p3)
- dst4 = r.dot(p4)
- list_dst = np.array([dst1, dst2, dst3, dst4])
- org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
- dst = np.zeros((4, 2), np.float32)
- # Project onto the image plane
- dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
- dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]
- warpR = cv2.getPerspectiveTransform(org, dst)
- dst1, dst2, dst3, dst4 = dst
- r1 = int(min(dst1[1], dst2[1]))
- r2 = int(max(dst3[1], dst4[1]))
- c1 = int(min(dst1[0], dst3[0]))
- c2 = int(max(dst2[0], dst4[0]))
- try:
- ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))
- dx = -c1
- dy = -r1
- T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
- ret = T1.dot(warpR)
- except:
- ratio = 1.0
- T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
- ret = T1
- return ret, (-r1, -c1), ratio, dst
- def get_warpAffine(config):
- """
- get_warpAffine
- """
- anglez = config.anglez
- rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
- [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
- return rz
|