123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/random_crop_data.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import numpy as np
- import cv2
- import random
- def is_poly_in_rect(poly, x, y, w, h):
- poly = np.array(poly)
- if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
- return False
- if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
- return False
- return True
- def is_poly_outside_rect(poly, x, y, w, h):
- poly = np.array(poly)
- if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
- return True
- if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
- return True
- return False
- def split_regions(axis):
- regions = []
- min_axis = 0
- for i in range(1, axis.shape[0]):
- if axis[i] != axis[i - 1] + 1:
- region = axis[min_axis:i]
- min_axis = i
- regions.append(region)
- return regions
- def random_select(axis, max_size):
- xx = np.random.choice(axis, size=2)
- xmin = np.min(xx)
- xmax = np.max(xx)
- xmin = np.clip(xmin, 0, max_size - 1)
- xmax = np.clip(xmax, 0, max_size - 1)
- return xmin, xmax
- def region_wise_random_select(regions, max_size):
- selected_index = list(np.random.choice(len(regions), 2))
- selected_values = []
- for index in selected_index:
- axis = regions[index]
- xx = int(np.random.choice(axis, size=1))
- selected_values.append(xx)
- xmin = min(selected_values)
- xmax = max(selected_values)
- return xmin, xmax
- def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
- h, w, _ = im.shape
- h_array = np.zeros(h, dtype=np.int32)
- w_array = np.zeros(w, dtype=np.int32)
- for points in text_polys:
- points = np.round(points, decimals=0).astype(np.int32)
- minx = np.min(points[:, 0])
- maxx = np.max(points[:, 0])
- w_array[minx:maxx] = 1
- miny = np.min(points[:, 1])
- maxy = np.max(points[:, 1])
- h_array[miny:maxy] = 1
- # ensure the cropped area not across a text
- h_axis = np.where(h_array == 0)[0]
- w_axis = np.where(w_array == 0)[0]
- if len(h_axis) == 0 or len(w_axis) == 0:
- return 0, 0, w, h
- h_regions = split_regions(h_axis)
- w_regions = split_regions(w_axis)
- for i in range(max_tries):
- if len(w_regions) > 1:
- xmin, xmax = region_wise_random_select(w_regions, w)
- else:
- xmin, xmax = random_select(w_axis, w)
- if len(h_regions) > 1:
- ymin, ymax = region_wise_random_select(h_regions, h)
- else:
- ymin, ymax = random_select(h_axis, h)
- if xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h:
- # area too small
- continue
- num_poly_in_rect = 0
- for poly in text_polys:
- if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
- ymax - ymin):
- num_poly_in_rect += 1
- break
- if num_poly_in_rect > 0:
- return xmin, ymin, xmax - xmin, ymax - ymin
- return 0, 0, w, h
- class EastRandomCropData(object):
- def __init__(self,
- size=(640, 640),
- max_tries=10,
- min_crop_side_ratio=0.1,
- keep_ratio=True,
- **kwargs):
- self.size = size
- self.max_tries = max_tries
- self.min_crop_side_ratio = min_crop_side_ratio
- self.keep_ratio = keep_ratio
- def __call__(self, data):
- img = data['image']
- text_polys = data['polys']
- ignore_tags = data['ignore_tags']
- texts = data['texts']
- all_care_polys = [
- text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
- ]
- # 计算crop区域
- crop_x, crop_y, crop_w, crop_h = crop_area(
- img, all_care_polys, self.min_crop_side_ratio, self.max_tries)
- # crop 图片 保持比例填充
- scale_w = self.size[0] / crop_w
- scale_h = self.size[1] / crop_h
- scale = min(scale_w, scale_h)
- h = int(crop_h * scale)
- w = int(crop_w * scale)
- if self.keep_ratio:
- padimg = np.zeros((self.size[1], self.size[0], img.shape[2]),
- img.dtype)
- padimg[:h, :w] = cv2.resize(
- img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
- img = padimg
- else:
- img = cv2.resize(
- img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
- tuple(self.size))
- # crop 文本框
- text_polys_crop = []
- ignore_tags_crop = []
- texts_crop = []
- for poly, text, tag in zip(text_polys, texts, ignore_tags):
- poly = ((poly - (crop_x, crop_y)) * scale).tolist()
- if not is_poly_outside_rect(poly, 0, 0, w, h):
- text_polys_crop.append(poly)
- ignore_tags_crop.append(tag)
- texts_crop.append(text)
- data['image'] = img
- data['polys'] = np.array(text_polys_crop)
- data['ignore_tags'] = ignore_tags_crop
- data['texts'] = texts_crop
- return data
- class RandomCropImgMask(object):
- def __init__(self, size, main_key, crop_keys, p=3 / 8, **kwargs):
- self.size = size
- self.main_key = main_key
- self.crop_keys = crop_keys
- self.p = p
- def __call__(self, data):
- image = data['image']
- h, w = image.shape[0:2]
- th, tw = self.size
- if w == tw and h == th:
- return data
- mask = data[self.main_key]
- if np.max(mask) > 0 and random.random() > self.p:
- # make sure to crop the text region
- tl = np.min(np.where(mask > 0), axis=1) - (th, tw)
- tl[tl < 0] = 0
- br = np.max(np.where(mask > 0), axis=1) - (th, tw)
- br[br < 0] = 0
- br[0] = min(br[0], h - th)
- br[1] = min(br[1], w - tw)
- i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
- j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
- else:
- i = random.randint(0, h - th) if h - th > 0 else 0
- j = random.randint(0, w - tw) if w - tw > 0 else 0
- # return i, j, th, tw
- for k in data:
- if k in self.crop_keys:
- if len(data[k].shape) == 3:
- if np.argmin(data[k].shape) == 0:
- img = data[k][:, i:i + th, j:j + tw]
- if img.shape[1] != img.shape[2]:
- a = 1
- elif np.argmin(data[k].shape) == 2:
- img = data[k][i:i + th, j:j + tw, :]
- if img.shape[1] != img.shape[0]:
- a = 1
- else:
- img = data[k]
- else:
- img = data[k][i:i + th, j:j + tw]
- if img.shape[0] != img.shape[1]:
- a = 1
- data[k] = img
- return data
|