12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import copy
- import numpy as np
- import string
- from shapely.geometry import LineString, Point, Polygon
- import json
- import copy
- from random import sample
- from ppocr.utils.logging import get_logger
- from ppocr.data.imaug.vqa.augment import order_by_tbyx
- class ClsLabelEncode(object):
- def __init__(self, label_list, **kwargs):
- self.label_list = label_list
- def __call__(self, data):
- label = data['label']
- if label not in self.label_list:
- return None
- label = self.label_list.index(label)
- data['label'] = label
- return data
- class DetLabelEncode(object):
- def __init__(self, **kwargs):
- pass
- def __call__(self, data):
- label = data['label']
- label = json.loads(label)
- nBox = len(label)
- boxes, txts, txt_tags = [], [], []
- for bno in range(0, nBox):
- box = label[bno]['points']
- txt = label[bno]['transcription']
- boxes.append(box)
- txts.append(txt)
- if txt in ['*', '###']:
- txt_tags.append(True)
- else:
- txt_tags.append(False)
- if len(boxes) == 0:
- return None
- boxes = self.expand_points_num(boxes)
- boxes = np.array(boxes, dtype=np.float32)
- txt_tags = np.array(txt_tags, dtype=bool)
- data['polys'] = boxes
- data['texts'] = txts
- data['ignore_tags'] = txt_tags
- return data
- def order_points_clockwise(self, pts):
- rect = np.zeros((4, 2), dtype="float32")
- s = pts.sum(axis=1)
- rect[0] = pts[np.argmin(s)]
- rect[2] = pts[np.argmax(s)]
- tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
- diff = np.diff(np.array(tmp), axis=1)
- rect[1] = tmp[np.argmin(diff)]
- rect[3] = tmp[np.argmax(diff)]
- return rect
- def expand_points_num(self, boxes):
- max_points_num = 0
- for box in boxes:
- if len(box) > max_points_num:
- max_points_num = len(box)
- ex_boxes = []
- for box in boxes:
- ex_box = box + [box[-1]] * (max_points_num - len(box))
- ex_boxes.append(ex_box)
- return ex_boxes
- class BaseRecLabelEncode(object):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- lower=False):
- self.max_text_len = max_text_length
- self.beg_str = "sos"
- self.end_str = "eos"
- self.lower = lower
- if character_dict_path is None:
- logger = get_logger()
- logger.warning(
- "The character_dict_path is None, model can only recognize number and lower letters"
- )
- self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
- dict_character = list(self.character_str)
- self.lower = True
- else:
- self.character_str = []
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip("\n").strip("\r\n")
- self.character_str.append(line)
- if use_space_char:
- self.character_str.append(" ")
- dict_character = list(self.character_str)
- dict_character = self.add_special_char(dict_character)
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.character = dict_character
- def add_special_char(self, dict_character):
- return dict_character
- def encode(self, text):
- """convert text-label into text-index.
- input:
- text: text labels of each image. [batch_size]
- output:
- text: concatenated text index for CTCLoss.
- [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
- length: length of each text. [batch_size]
- """
- if len(text) == 0 or len(text) > self.max_text_len:
- return None
- if self.lower:
- text = text.lower()
- text_list = []
- for char in text:
- if char not in self.dict:
- # logger = get_logger()
- # logger.warning('{} is not in dict'.format(char))
- continue
- text_list.append(self.dict[char])
- if len(text_list) == 0:
- return None
- return text_list
- class CTCLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(CTCLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- data['length'] = np.array(len(text))
- text = text + [0] * (self.max_text_len - len(text))
- data['label'] = np.array(text)
- label = [0] * len(self.character)
- for x in text:
- label[x] += 1
- data['label_ace'] = np.array(label)
- return data
- def add_special_char(self, dict_character):
- dict_character = ['blank'] + dict_character
- return dict_character
- class E2ELabelEncodeTest(BaseRecLabelEncode):
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(E2ELabelEncodeTest, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def __call__(self, data):
- import json
- padnum = len(self.dict)
- label = data['label']
- label = json.loads(label)
- nBox = len(label)
- boxes, txts, txt_tags = [], [], []
- for bno in range(0, nBox):
- box = label[bno]['points']
- txt = label[bno]['transcription']
- boxes.append(box)
- txts.append(txt)
- if txt in ['*', '###']:
- txt_tags.append(True)
- else:
- txt_tags.append(False)
- boxes = np.array(boxes, dtype=np.float32)
- txt_tags = np.array(txt_tags, dtype=bool)
- data['polys'] = boxes
- data['ignore_tags'] = txt_tags
- temp_texts = []
- for text in txts:
- text = text.lower()
- text = self.encode(text)
- if text is None:
- return None
- text = text + [padnum] * (self.max_text_len - len(text)
- ) # use 36 to pad
- temp_texts.append(text)
- data['texts'] = np.array(temp_texts)
- return data
- class E2ELabelEncodeTrain(object):
- def __init__(self, **kwargs):
- pass
- def __call__(self, data):
- import json
- label = data['label']
- label = json.loads(label)
- nBox = len(label)
- boxes, txts, txt_tags = [], [], []
- for bno in range(0, nBox):
- box = label[bno]['points']
- txt = label[bno]['transcription']
- boxes.append(box)
- txts.append(txt)
- if txt in ['*', '###']:
- txt_tags.append(True)
- else:
- txt_tags.append(False)
- boxes = np.array(boxes, dtype=np.float32)
- txt_tags = np.array(txt_tags, dtype=bool)
- data['polys'] = boxes
- data['texts'] = txts
- data['ignore_tags'] = txt_tags
- return data
- class KieLabelEncode(object):
- def __init__(self,
- character_dict_path,
- class_path,
- norm=10,
- directed=False,
- **kwargs):
- super(KieLabelEncode, self).__init__()
- self.dict = dict({'': 0})
- self.label2classid_map = dict()
- with open(character_dict_path, 'r', encoding='utf-8') as fr:
- idx = 1
- for line in fr:
- char = line.strip()
- self.dict[char] = idx
- idx += 1
- with open(class_path, "r") as fin:
- lines = fin.readlines()
- for idx, line in enumerate(lines):
- line = line.strip("\n")
- self.label2classid_map[line] = idx
- self.norm = norm
- self.directed = directed
- def compute_relation(self, boxes):
- """Compute relation between every two boxes."""
- x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
- x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
- ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
- dxs = (x1s[:, 0][None] - x1s) / self.norm
- dys = (y1s[:, 0][None] - y1s) / self.norm
- xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
- whs = ws / hs + np.zeros_like(xhhs)
- relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
- bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
- return relations, bboxes
- def pad_text_indices(self, text_inds):
- """Pad text index to same length."""
- max_len = 300
- recoder_len = max([len(text_ind) for text_ind in text_inds])
- padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
- for idx, text_ind in enumerate(text_inds):
- padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
- return padded_text_inds, recoder_len
- def list_to_numpy(self, ann_infos):
- """Convert bboxes, relations, texts and labels to ndarray."""
- boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
- boxes = np.array(boxes, np.int32)
- relations, bboxes = self.compute_relation(boxes)
- labels = ann_infos.get('labels', None)
- if labels is not None:
- labels = np.array(labels, np.int32)
- edges = ann_infos.get('edges', None)
- if edges is not None:
- labels = labels[:, None]
- edges = np.array(edges)
- edges = (edges[:, None] == edges[None, :]).astype(np.int32)
- if self.directed:
- edges = (edges & labels == 1).astype(np.int32)
- np.fill_diagonal(edges, -1)
- labels = np.concatenate([labels, edges], -1)
- padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
- max_num = 300
- temp_bboxes = np.zeros([max_num, 4])
- h, _ = bboxes.shape
- temp_bboxes[:h, :] = bboxes
- temp_relations = np.zeros([max_num, max_num, 5])
- temp_relations[:h, :h, :] = relations
- temp_padded_text_inds = np.zeros([max_num, max_num])
- temp_padded_text_inds[:h, :] = padded_text_inds
- temp_labels = np.zeros([max_num, max_num])
- temp_labels[:h, :h + 1] = labels
- tag = np.array([h, recoder_len])
- return dict(
- image=ann_infos['image'],
- points=temp_bboxes,
- relations=temp_relations,
- texts=temp_padded_text_inds,
- labels=temp_labels,
- tag=tag)
- def convert_canonical(self, points_x, points_y):
- assert len(points_x) == 4
- assert len(points_y) == 4
- points = [Point(points_x[i], points_y[i]) for i in range(4)]
- polygon = Polygon([(p.x, p.y) for p in points])
- min_x, min_y, _, _ = polygon.bounds
- points_to_lefttop = [
- LineString([points[i], Point(min_x, min_y)]) for i in range(4)
- ]
- distances = np.array([line.length for line in points_to_lefttop])
- sort_dist_idx = np.argsort(distances)
- lefttop_idx = sort_dist_idx[0]
- if lefttop_idx == 0:
- point_orders = [0, 1, 2, 3]
- elif lefttop_idx == 1:
- point_orders = [1, 2, 3, 0]
- elif lefttop_idx == 2:
- point_orders = [2, 3, 0, 1]
- else:
- point_orders = [3, 0, 1, 2]
- sorted_points_x = [points_x[i] for i in point_orders]
- sorted_points_y = [points_y[j] for j in point_orders]
- return sorted_points_x, sorted_points_y
- def sort_vertex(self, points_x, points_y):
- assert len(points_x) == 4
- assert len(points_y) == 4
- x = np.array(points_x)
- y = np.array(points_y)
- center_x = np.sum(x) * 0.25
- center_y = np.sum(y) * 0.25
- x_arr = np.array(x - center_x)
- y_arr = np.array(y - center_y)
- angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
- sort_idx = np.argsort(angle)
- sorted_points_x, sorted_points_y = [], []
- for i in range(4):
- sorted_points_x.append(points_x[sort_idx[i]])
- sorted_points_y.append(points_y[sort_idx[i]])
- return self.convert_canonical(sorted_points_x, sorted_points_y)
- def __call__(self, data):
- import json
- label = data['label']
- annotations = json.loads(label)
- boxes, texts, text_inds, labels, edges = [], [], [], [], []
- for ann in annotations:
- box = ann['points']
- x_list = [box[i][0] for i in range(4)]
- y_list = [box[i][1] for i in range(4)]
- sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
- sorted_box = []
- for x, y in zip(sorted_x_list, sorted_y_list):
- sorted_box.append(x)
- sorted_box.append(y)
- boxes.append(sorted_box)
- text = ann['transcription']
- texts.append(ann['transcription'])
- text_ind = [self.dict[c] for c in text if c in self.dict]
- text_inds.append(text_ind)
- if 'label' in ann.keys():
- labels.append(self.label2classid_map[ann['label']])
- elif 'key_cls' in ann.keys():
- labels.append(ann['key_cls'])
- else:
- raise ValueError(
- "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
- )
- edges.append(ann.get('edge', 0))
- ann_infos = dict(
- image=data['image'],
- points=boxes,
- texts=texts,
- text_inds=text_inds,
- edges=edges,
- labels=labels)
- return self.list_to_numpy(ann_infos)
- class AttnLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(AttnLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def add_special_char(self, dict_character):
- self.beg_str = "sos"
- self.end_str = "eos"
- dict_character = [self.beg_str] + dict_character + [self.end_str]
- return dict_character
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- if len(text) >= self.max_text_len:
- return None
- data['length'] = np.array(len(text))
- text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
- - len(text) - 2)
- data['label'] = np.array(text)
- return data
- def get_ignored_tokens(self):
- beg_idx = self.get_beg_end_flag_idx("beg")
- end_idx = self.get_beg_end_flag_idx("end")
- return [beg_idx, end_idx]
- def get_beg_end_flag_idx(self, beg_or_end):
- if beg_or_end == "beg":
- idx = np.array(self.dict[self.beg_str])
- elif beg_or_end == "end":
- idx = np.array(self.dict[self.end_str])
- else:
- assert False, "Unsupport type %s in get_beg_end_flag_idx" \
- % beg_or_end
- return idx
- class RFLLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(RFLLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def add_special_char(self, dict_character):
- self.beg_str = "sos"
- self.end_str = "eos"
- dict_character = [self.beg_str] + dict_character + [self.end_str]
- return dict_character
- def encode_cnt(self, text):
- cnt_label = [0.0] * len(self.character)
- for char_ in text:
- cnt_label[char_] += 1
- return np.array(cnt_label)
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- if len(text) >= self.max_text_len:
- return None
- cnt_label = self.encode_cnt(text)
- data['length'] = np.array(len(text))
- text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
- - len(text) - 2)
- if len(text) != self.max_text_len:
- return None
- data['label'] = np.array(text)
- data['cnt_label'] = cnt_label
- return data
- def get_ignored_tokens(self):
- beg_idx = self.get_beg_end_flag_idx("beg")
- end_idx = self.get_beg_end_flag_idx("end")
- return [beg_idx, end_idx]
- def get_beg_end_flag_idx(self, beg_or_end):
- if beg_or_end == "beg":
- idx = np.array(self.dict[self.beg_str])
- elif beg_or_end == "end":
- idx = np.array(self.dict[self.end_str])
- else:
- assert False, "Unsupport type %s in get_beg_end_flag_idx" \
- % beg_or_end
- return idx
- class SEEDLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(SEEDLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def add_special_char(self, dict_character):
- self.padding = "padding"
- self.end_str = "eos"
- self.unknown = "unknown"
- dict_character = dict_character + [
- self.end_str, self.padding, self.unknown
- ]
- return dict_character
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- if len(text) >= self.max_text_len:
- return None
- data['length'] = np.array(len(text)) + 1 # conclude eos
- text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
- self.max_text_len - len(text) - 1)
- data['label'] = np.array(text)
- return data
- class SRNLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length=25,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(SRNLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def add_special_char(self, dict_character):
- dict_character = dict_character + [self.beg_str, self.end_str]
- return dict_character
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- char_num = len(self.character)
- if text is None:
- return None
- if len(text) > self.max_text_len:
- return None
- data['length'] = np.array(len(text))
- text = text + [char_num - 1] * (self.max_text_len - len(text))
- data['label'] = np.array(text)
- return data
- def get_ignored_tokens(self):
- beg_idx = self.get_beg_end_flag_idx("beg")
- end_idx = self.get_beg_end_flag_idx("end")
- return [beg_idx, end_idx]
- def get_beg_end_flag_idx(self, beg_or_end):
- if beg_or_end == "beg":
- idx = np.array(self.dict[self.beg_str])
- elif beg_or_end == "end":
- idx = np.array(self.dict[self.end_str])
- else:
- assert False, "Unsupport type %s in get_beg_end_flag_idx" \
- % beg_or_end
- return idx
- class TableLabelEncode(AttnLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path,
- replace_empty_cell_token=False,
- merge_no_span_structure=False,
- learn_empty_box=False,
- loc_reg_num=4,
- **kwargs):
- self.max_text_len = max_text_length
- self.lower = False
- self.learn_empty_box = learn_empty_box
- self.merge_no_span_structure = merge_no_span_structure
- self.replace_empty_cell_token = replace_empty_cell_token
- dict_character = []
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip("\n").strip("\r\n")
- dict_character.append(line)
- if self.merge_no_span_structure:
- if "<td></td>" not in dict_character:
- dict_character.append("<td></td>")
- if "<td>" in dict_character:
- dict_character.remove("<td>")
- dict_character = self.add_special_char(dict_character)
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.idx2char = {v: k for k, v in self.dict.items()}
- self.character = dict_character
- self.loc_reg_num = loc_reg_num
- self.pad_idx = self.dict[self.beg_str]
- self.start_idx = self.dict[self.beg_str]
- self.end_idx = self.dict[self.end_str]
- self.td_token = ['<td>', '<td', '<eb></eb>', '<td></td>']
- self.empty_bbox_token_dict = {
- "[]": '<eb></eb>',
- "[' ']": '<eb1></eb1>',
- "['<b>', ' ', '</b>']": '<eb2></eb2>',
- "['\\u2028', '\\u2028']": '<eb3></eb3>',
- "['<sup>', ' ', '</sup>']": '<eb4></eb4>',
- "['<b>', '</b>']": '<eb5></eb5>',
- "['<i>', ' ', '</i>']": '<eb6></eb6>',
- "['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>',
- "['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>',
- "['<i>', '</i>']": '<eb9></eb9>',
- "['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']":
- '<eb10></eb10>',
- }
- @property
- def _max_text_len(self):
- return self.max_text_len + 2
- def __call__(self, data):
- cells = data['cells']
- structure = data['structure']
- if self.merge_no_span_structure:
- structure = self._merge_no_span_structure(structure)
- if self.replace_empty_cell_token:
- structure = self._replace_empty_cell_token(structure, cells)
- # remove empty token and add " " to span token
- new_structure = []
- for token in structure:
- if token != '':
- if 'span' in token and token[0] != ' ':
- token = ' ' + token
- new_structure.append(token)
- # encode structure
- structure = self.encode(new_structure)
- if structure is None:
- return None
- structure = [self.start_idx] + structure + [self.end_idx
- ] # add sos abd eos
- structure = structure + [self.pad_idx] * (self._max_text_len -
- len(structure)) # pad
- structure = np.array(structure)
- data['structure'] = structure
- if len(structure) > self._max_text_len:
- return None
- # encode box
- bboxes = np.zeros(
- (self._max_text_len, self.loc_reg_num), dtype=np.float32)
- bbox_masks = np.zeros((self._max_text_len, 1), dtype=np.float32)
- bbox_idx = 0
- for i, token in enumerate(structure):
- if self.idx2char[token] in self.td_token:
- if 'bbox' in cells[bbox_idx] and len(cells[bbox_idx][
- 'tokens']) > 0:
- bbox = cells[bbox_idx]['bbox'].copy()
- bbox = np.array(bbox, dtype=np.float32).reshape(-1)
- bboxes[i] = bbox
- bbox_masks[i] = 1.0
- if self.learn_empty_box:
- bbox_masks[i] = 1.0
- bbox_idx += 1
- data['bboxes'] = bboxes
- data['bbox_masks'] = bbox_masks
- return data
- def _merge_no_span_structure(self, structure):
- """
- This code is refer from:
- https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
- """
- new_structure = []
- i = 0
- while i < len(structure):
- token = structure[i]
- if token == '<td>':
- token = '<td></td>'
- i += 1
- new_structure.append(token)
- i += 1
- return new_structure
- def _replace_empty_cell_token(self, token_list, cells):
- """
- This fun code is refer from:
- https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
- """
- bbox_idx = 0
- add_empty_bbox_token_list = []
- for token in token_list:
- if token in ['<td></td>', '<td', '<td>']:
- if 'bbox' not in cells[bbox_idx].keys():
- content = str(cells[bbox_idx]['tokens'])
- token = self.empty_bbox_token_dict[content]
- add_empty_bbox_token_list.append(token)
- bbox_idx += 1
- else:
- add_empty_bbox_token_list.append(token)
- return add_empty_bbox_token_list
- class TableMasterLabelEncode(TableLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path,
- replace_empty_cell_token=False,
- merge_no_span_structure=False,
- learn_empty_box=False,
- loc_reg_num=4,
- **kwargs):
- super(TableMasterLabelEncode, self).__init__(
- max_text_length, character_dict_path, replace_empty_cell_token,
- merge_no_span_structure, learn_empty_box, loc_reg_num, **kwargs)
- self.pad_idx = self.dict[self.pad_str]
- self.unknown_idx = self.dict[self.unknown_str]
- @property
- def _max_text_len(self):
- return self.max_text_len
- def add_special_char(self, dict_character):
- self.beg_str = '<SOS>'
- self.end_str = '<EOS>'
- self.unknown_str = '<UKN>'
- self.pad_str = '<PAD>'
- dict_character = dict_character
- dict_character = dict_character + [
- self.unknown_str, self.beg_str, self.end_str, self.pad_str
- ]
- return dict_character
- class TableBoxEncode(object):
- def __init__(self, in_box_format='xyxy', out_box_format='xyxy', **kwargs):
- assert out_box_format in ['xywh', 'xyxy', 'xyxyxyxy']
- self.in_box_format = in_box_format
- self.out_box_format = out_box_format
- def __call__(self, data):
- img_height, img_width = data['image'].shape[:2]
- bboxes = data['bboxes']
- if self.in_box_format != self.out_box_format:
- if self.out_box_format == 'xywh':
- if self.in_box_format == 'xyxyxyxy':
- bboxes = self.xyxyxyxy2xywh(bboxes)
- elif self.in_box_format == 'xyxy':
- bboxes = self.xyxy2xywh(bboxes)
- bboxes[:, 0::2] /= img_width
- bboxes[:, 1::2] /= img_height
- data['bboxes'] = bboxes
- return data
- def xyxyxyxy2xywh(self, boxes):
- new_bboxes = np.zeros([len(bboxes), 4])
- new_bboxes[:, 0] = bboxes[:, 0::2].min() # x1
- new_bboxes[:, 1] = bboxes[:, 1::2].min() # y1
- new_bboxes[:, 2] = bboxes[:, 0::2].max() - new_bboxes[:, 0] # w
- new_bboxes[:, 3] = bboxes[:, 1::2].max() - new_bboxes[:, 1] # h
- return new_bboxes
- def xyxy2xywh(self, bboxes):
- new_bboxes = np.empty_like(bboxes)
- new_bboxes[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2 # x center
- new_bboxes[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2 # y center
- new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] # width
- new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] # height
- return new_bboxes
- class SARLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(SARLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def add_special_char(self, dict_character):
- beg_end_str = "<BOS/EOS>"
- unknown_str = "<UKN>"
- padding_str = "<PAD>"
- dict_character = dict_character + [unknown_str]
- self.unknown_idx = len(dict_character) - 1
- dict_character = dict_character + [beg_end_str]
- self.start_idx = len(dict_character) - 1
- self.end_idx = len(dict_character) - 1
- dict_character = dict_character + [padding_str]
- self.padding_idx = len(dict_character) - 1
- return dict_character
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- if len(text) >= self.max_text_len - 1:
- return None
- data['length'] = np.array(len(text))
- target = [self.start_idx] + text + [self.end_idx]
- padded_text = [self.padding_idx for _ in range(self.max_text_len)]
- padded_text[:len(target)] = target
- data['label'] = np.array(padded_text)
- return data
- def get_ignored_tokens(self):
- return [self.padding_idx]
- class PRENLabelEncode(BaseRecLabelEncode):
- def __init__(self,
- max_text_length,
- character_dict_path,
- use_space_char=False,
- **kwargs):
- super(PRENLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def add_special_char(self, dict_character):
- padding_str = '<PAD>' # 0
- end_str = '<EOS>' # 1
- unknown_str = '<UNK>' # 2
- dict_character = [padding_str, end_str, unknown_str] + dict_character
- self.padding_idx = 0
- self.end_idx = 1
- self.unknown_idx = 2
- return dict_character
- def encode(self, text):
- if len(text) == 0 or len(text) >= self.max_text_len:
- return None
- if self.lower:
- text = text.lower()
- text_list = []
- for char in text:
- if char not in self.dict:
- text_list.append(self.unknown_idx)
- else:
- text_list.append(self.dict[char])
- text_list.append(self.end_idx)
- if len(text_list) < self.max_text_len:
- text_list += [self.padding_idx] * (
- self.max_text_len - len(text_list))
- return text_list
- def __call__(self, data):
- text = data['label']
- encoded_text = self.encode(text)
- if encoded_text is None:
- return None
- data['label'] = np.array(encoded_text)
- return data
- class VQATokenLabelEncode(object):
- """
- Label encode for NLP VQA methods
- """
- def __init__(self,
- class_path,
- contains_re=False,
- add_special_ids=False,
- algorithm='LayoutXLM',
- use_textline_bbox_info=True,
- order_method=None,
- infer_mode=False,
- ocr_engine=None,
- **kwargs):
- super(VQATokenLabelEncode, self).__init__()
- from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
- from ppocr.utils.utility import load_vqa_bio_label_maps
- tokenizer_dict = {
- 'LayoutXLM': {
- 'class': LayoutXLMTokenizer,
- 'pretrained_model': 'layoutxlm-base-uncased'
- },
- 'LayoutLM': {
- 'class': LayoutLMTokenizer,
- 'pretrained_model': 'layoutlm-base-uncased'
- },
- 'LayoutLMv2': {
- 'class': LayoutLMv2Tokenizer,
- 'pretrained_model': 'layoutlmv2-base-uncased'
- }
- }
- self.contains_re = contains_re
- tokenizer_config = tokenizer_dict[algorithm]
- self.tokenizer = tokenizer_config['class'].from_pretrained(
- tokenizer_config['pretrained_model'])
- self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
- self.add_special_ids = add_special_ids
- self.infer_mode = infer_mode
- self.ocr_engine = ocr_engine
- self.use_textline_bbox_info = use_textline_bbox_info
- self.order_method = order_method
- assert self.order_method in [None, "tb-yx"]
- def split_bbox(self, bbox, text, tokenizer):
- words = text.split()
- token_bboxes = []
- curr_word_idx = 0
- x1, y1, x2, y2 = bbox
- unit_w = (x2 - x1) / len(text)
- for idx, word in enumerate(words):
- curr_w = len(word) * unit_w
- word_bbox = [x1, y1, x1 + curr_w, y2]
- token_bboxes.extend([word_bbox] * len(tokenizer.tokenize(word)))
- x1 += (len(word) + 1) * unit_w
- return token_bboxes
- def filter_empty_contents(self, ocr_info):
- """
- find out the empty texts and remove the links
- """
- new_ocr_info = []
- empty_index = []
- for idx, info in enumerate(ocr_info):
- if len(info["transcription"]) > 0:
- new_ocr_info.append(copy.deepcopy(info))
- else:
- empty_index.append(info["id"])
- for idx, info in enumerate(new_ocr_info):
- new_link = []
- for link in info["linking"]:
- if link[0] in empty_index or link[1] in empty_index:
- continue
- new_link.append(link)
- new_ocr_info[idx]["linking"] = new_link
- return new_ocr_info
- def __call__(self, data):
- # load bbox and label info
- ocr_info = self._load_ocr_info(data)
- for idx in range(len(ocr_info)):
- if "bbox" not in ocr_info[idx]:
- ocr_info[idx]["bbox"] = self.trans_poly_to_bbox(ocr_info[idx][
- "points"])
- if self.order_method == "tb-yx":
- ocr_info = order_by_tbyx(ocr_info)
- # for re
- train_re = self.contains_re and not self.infer_mode
- if train_re:
- ocr_info = self.filter_empty_contents(ocr_info)
- height, width, _ = data['image'].shape
- words_list = []
- bbox_list = []
- input_ids_list = []
- token_type_ids_list = []
- segment_offset_id = []
- gt_label_list = []
- entities = []
- if train_re:
- relations = []
- id2label = {}
- entity_id_to_index_map = {}
- empty_entity = set()
- data['ocr_info'] = copy.deepcopy(ocr_info)
- for info in ocr_info:
- text = info["transcription"]
- if len(text) <= 0:
- continue
- if train_re:
- # for re
- if len(text) == 0:
- empty_entity.add(info["id"])
- continue
- id2label[info["id"]] = info["label"]
- relations.extend([tuple(sorted(l)) for l in info["linking"]])
- # smooth_box
- info["bbox"] = self.trans_poly_to_bbox(info["points"])
- encode_res = self.tokenizer.encode(
- text,
- pad_to_max_seq_len=False,
- return_attention_mask=True,
- return_token_type_ids=True)
- if not self.add_special_ids:
- # TODO: use tok.all_special_ids to remove
- encode_res["input_ids"] = encode_res["input_ids"][1:-1]
- encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
- -1]
- encode_res["attention_mask"] = encode_res["attention_mask"][1:
- -1]
- if self.use_textline_bbox_info:
- bbox = [info["bbox"]] * len(encode_res["input_ids"])
- else:
- bbox = self.split_bbox(info["bbox"], info["transcription"],
- self.tokenizer)
- if len(bbox) <= 0:
- continue
- bbox = self._smooth_box(bbox, height, width)
- if self.add_special_ids:
- bbox.insert(0, [0, 0, 0, 0])
- bbox.append([0, 0, 0, 0])
- # parse label
- if not self.infer_mode:
- label = info['label']
- gt_label = self._parse_label(label, encode_res)
- # construct entities for re
- if train_re:
- if gt_label[0] != self.label2id_map["O"]:
- entity_id_to_index_map[info["id"]] = len(entities)
- label = label.upper()
- entities.append({
- "start": len(input_ids_list),
- "end":
- len(input_ids_list) + len(encode_res["input_ids"]),
- "label": label.upper(),
- })
- else:
- entities.append({
- "start": len(input_ids_list),
- "end": len(input_ids_list) + len(encode_res["input_ids"]),
- "label": 'O',
- })
- input_ids_list.extend(encode_res["input_ids"])
- token_type_ids_list.extend(encode_res["token_type_ids"])
- bbox_list.extend(bbox)
- words_list.append(text)
- segment_offset_id.append(len(input_ids_list))
- if not self.infer_mode:
- gt_label_list.extend(gt_label)
- data['input_ids'] = input_ids_list
- data['token_type_ids'] = token_type_ids_list
- data['bbox'] = bbox_list
- data['attention_mask'] = [1] * len(input_ids_list)
- data['labels'] = gt_label_list
- data['segment_offset_id'] = segment_offset_id
- data['tokenizer_params'] = dict(
- padding_side=self.tokenizer.padding_side,
- pad_token_type_id=self.tokenizer.pad_token_type_id,
- pad_token_id=self.tokenizer.pad_token_id)
- data['entities'] = entities
- if train_re:
- data['relations'] = relations
- data['id2label'] = id2label
- data['empty_entity'] = empty_entity
- data['entity_id_to_index_map'] = entity_id_to_index_map
- return data
- def trans_poly_to_bbox(self, poly):
- x1 = int(np.min([p[0] for p in poly]))
- x2 = int(np.max([p[0] for p in poly]))
- y1 = int(np.min([p[1] for p in poly]))
- y2 = int(np.max([p[1] for p in poly]))
- return [x1, y1, x2, y2]
- def _load_ocr_info(self, data):
- if self.infer_mode:
- ocr_result = self.ocr_engine.ocr(data['image'], cls=False)[0]
- ocr_info = []
- for res in ocr_result:
- ocr_info.append({
- "transcription": res[1][0],
- "bbox": self.trans_poly_to_bbox(res[0]),
- "points": res[0],
- })
- return ocr_info
- else:
- info = data['label']
- # read text info
- info_dict = json.loads(info)
- return info_dict
- def _smooth_box(self, bboxes, height, width):
- bboxes = np.array(bboxes)
- bboxes[:, 0] = bboxes[:, 0] * 1000 / width
- bboxes[:, 2] = bboxes[:, 2] * 1000 / width
- bboxes[:, 1] = bboxes[:, 1] * 1000 / height
- bboxes[:, 3] = bboxes[:, 3] * 1000 / height
- bboxes = bboxes.astype("int64").tolist()
- return bboxes
- def _parse_label(self, label, encode_res):
- gt_label = []
- if label.lower() in ["other", "others", "ignore"]:
- gt_label.extend([0] * len(encode_res["input_ids"]))
- else:
- gt_label.append(self.label2id_map[("b-" + label).upper()])
- gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
- (len(encode_res["input_ids"]) - 1))
- return gt_label
- class MultiLabelEncode(BaseRecLabelEncode):
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(MultiLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
- use_space_char, **kwargs)
- self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
- use_space_char, **kwargs)
- def __call__(self, data):
- data_ctc = copy.deepcopy(data)
- data_sar = copy.deepcopy(data)
- data_out = dict()
- data_out['img_path'] = data.get('img_path', None)
- data_out['image'] = data['image']
- ctc = self.ctc_encode.__call__(data_ctc)
- sar = self.sar_encode.__call__(data_sar)
- if ctc is None or sar is None:
- return None
- data_out['label_ctc'] = ctc['label']
- data_out['label_sar'] = sar['label']
- data_out['length'] = ctc['length']
- return data_out
- class NRTRLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(NRTRLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- if len(text) >= self.max_text_len - 1:
- return None
- data['length'] = np.array(len(text))
- text.insert(0, 2)
- text.append(3)
- text = text + [0] * (self.max_text_len - len(text))
- data['label'] = np.array(text)
- return data
- def add_special_char(self, dict_character):
- dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
- return dict_character
- class ViTSTRLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- ignore_index=0,
- **kwargs):
- super(ViTSTRLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- self.ignore_index = ignore_index
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- if len(text) >= self.max_text_len:
- return None
- data['length'] = np.array(len(text))
- text.insert(0, self.ignore_index)
- text.append(1)
- text = text + [self.ignore_index] * (self.max_text_len + 2 - len(text))
- data['label'] = np.array(text)
- return data
- def add_special_char(self, dict_character):
- dict_character = ['<s>', '</s>'] + dict_character
- return dict_character
- class ABINetLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- ignore_index=100,
- **kwargs):
- super(ABINetLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- self.ignore_index = ignore_index
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- if len(text) >= self.max_text_len:
- return None
- data['length'] = np.array(len(text))
- text.append(0)
- text = text + [self.ignore_index] * (self.max_text_len + 1 - len(text))
- data['label'] = np.array(text)
- return data
- def add_special_char(self, dict_character):
- dict_character = ['</s>'] + dict_character
- return dict_character
- class SRLabelEncode(BaseRecLabelEncode):
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(SRLabelEncode, self).__init__(max_text_length,
- character_dict_path, use_space_char)
- self.dic = {}
- with open(character_dict_path, 'r') as fin:
- for line in fin.readlines():
- line = line.strip()
- character, sequence = line.split()
- self.dic[character] = sequence
- english_stroke_alphabet = '0123456789'
- self.english_stroke_dict = {}
- for index in range(len(english_stroke_alphabet)):
- self.english_stroke_dict[english_stroke_alphabet[index]] = index
- def encode(self, label):
- stroke_sequence = ''
- for character in label:
- if character not in self.dic:
- continue
- else:
- stroke_sequence += self.dic[character]
- stroke_sequence += '0'
- label = stroke_sequence
- length = len(label)
- input_tensor = np.zeros(self.max_text_len).astype("int64")
- for j in range(length - 1):
- input_tensor[j + 1] = self.english_stroke_dict[label[j]]
- return length, input_tensor
- def __call__(self, data):
- text = data['label']
- length, input_tensor = self.encode(text)
- data["length"] = length
- data["input_tensor"] = input_tensor
- if text is None:
- return None
- return data
- class SPINLabelEncode(AttnLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- lower=True,
- **kwargs):
- super(SPINLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char)
- self.lower = lower
- def add_special_char(self, dict_character):
- self.beg_str = "sos"
- self.end_str = "eos"
- dict_character = [self.beg_str] + [self.end_str] + dict_character
- return dict_character
- def __call__(self, data):
- text = data['label']
- text = self.encode(text)
- if text is None:
- return None
- if len(text) > self.max_text_len:
- return None
- data['length'] = np.array(len(text))
- target = [0] + text + [1]
- padded_text = [0 for _ in range(self.max_text_len + 2)]
- padded_text[:len(target)] = target
- data['label'] = np.array(padded_text)
- return data
- class VLLabelEncode(BaseRecLabelEncode):
- """ Convert between text-label and text-index """
- def __init__(self,
- max_text_length,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(VLLabelEncode, self).__init__(max_text_length,
- character_dict_path, use_space_char)
- self.dict = {}
- for i, char in enumerate(self.character):
- self.dict[char] = i
- def __call__(self, data):
- text = data['label'] # original string
- # generate occluded text
- len_str = len(text)
- if len_str <= 0:
- return None
- change_num = 1
- order = list(range(len_str))
- change_id = sample(order, change_num)[0]
- label_sub = text[change_id]
- if change_id == (len_str - 1):
- label_res = text[:change_id]
- elif change_id == 0:
- label_res = text[1:]
- else:
- label_res = text[:change_id] + text[change_id + 1:]
- data['label_res'] = label_res # remaining string
- data['label_sub'] = label_sub # occluded character
- data['label_id'] = change_id # character index
- # encode label
- text = self.encode(text)
- if text is None:
- return None
- text = [i + 1 for i in text]
- data['length'] = np.array(len(text))
- text = text + [0] * (self.max_text_len - len(text))
- data['label'] = np.array(text)
- label_res = self.encode(label_res)
- label_sub = self.encode(label_sub)
- if label_res is None:
- label_res = []
- else:
- label_res = [i + 1 for i in label_res]
- if label_sub is None:
- label_sub = []
- else:
- label_sub = [i + 1 for i in label_sub]
- data['length_res'] = np.array(len(label_res))
- data['length_sub'] = np.array(len(label_sub))
- label_res = label_res + [0] * (self.max_text_len - len(label_res))
- label_sub = label_sub + [0] * (self.max_text_len - len(label_sub))
- data['label_res'] = np.array(label_res)
- data['label_sub'] = np.array(label_sub)
- return data
- class CTLabelEncode(object):
- def __init__(self, **kwargs):
- pass
- def __call__(self, data):
- label = data['label']
- label = json.loads(label)
- nBox = len(label)
- boxes, txts = [], []
- for bno in range(0, nBox):
- box = label[bno]['points']
- box = np.array(box)
- boxes.append(box)
- txt = label[bno]['transcription']
- txts.append(txt)
- if len(boxes) == 0:
- return None
- data['polys'] = boxes
- data['texts'] = txts
- return data
- class CANLabelEncode(BaseRecLabelEncode):
- def __init__(self,
- character_dict_path,
- max_text_length=100,
- use_space_char=False,
- lower=True,
- **kwargs):
- super(CANLabelEncode, self).__init__(
- max_text_length, character_dict_path, use_space_char, lower)
- def encode(self, text_seq):
- text_seq_encoded = []
- for text in text_seq:
- if text not in self.character:
- continue
- text_seq_encoded.append(self.dict.get(text))
- if len(text_seq_encoded) == 0:
- return None
- return text_seq_encoded
- def __call__(self, data):
- label = data['label']
- if isinstance(label, str):
- label = label.strip().split()
- label.append(self.end_str)
- data['label'] = self.encode(label)
- return data
|