123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/iaa_augment.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import numpy as np
- import imgaug
- import imgaug.augmenters as iaa
- class AugmenterBuilder(object):
- def __init__(self):
- pass
- def build(self, args, root=True):
- if args is None or len(args) == 0:
- return None
- elif isinstance(args, list):
- if root:
- sequence = [self.build(value, root=False) for value in args]
- return iaa.Sequential(sequence)
- else:
- return getattr(iaa, args[0])(
- *[self.to_tuple_if_list(a) for a in args[1:]])
- elif isinstance(args, dict):
- cls = getattr(iaa, args['type'])
- return cls(**{
- k: self.to_tuple_if_list(v)
- for k, v in args['args'].items()
- })
- else:
- raise RuntimeError('unknown augmenter arg: ' + str(args))
- def to_tuple_if_list(self, obj):
- if isinstance(obj, list):
- return tuple(obj)
- return obj
- class IaaAugment():
- def __init__(self, augmenter_args=None, **kwargs):
- if augmenter_args is None:
- augmenter_args = [{
- 'type': 'Fliplr',
- 'args': {
- 'p': 0.5
- }
- }, {
- 'type': 'Affine',
- 'args': {
- 'rotate': [-10, 10]
- }
- }, {
- 'type': 'Resize',
- 'args': {
- 'size': [0.5, 3]
- }
- }]
- self.augmenter = AugmenterBuilder().build(augmenter_args)
- def __call__(self, data):
- image = data['image']
- shape = image.shape
- if self.augmenter:
- aug = self.augmenter.to_deterministic()
- data['image'] = aug.augment_image(image)
- data = self.may_augment_annotation(aug, data, shape)
- return data
- def may_augment_annotation(self, aug, data, shape):
- if aug is None:
- return data
- line_polys = []
- for poly in data['polys']:
- new_poly = self.may_augment_poly(aug, shape, poly)
- line_polys.append(new_poly)
- data['polys'] = np.array(line_polys)
- return data
- def may_augment_poly(self, aug, img_shape, poly):
- keypoints = [imgaug.Keypoint(p[0], p[1]) for p in poly]
- keypoints = aug.augment_keypoints(
- [imgaug.KeypointsOnImage(
- keypoints, shape=img_shape)])[0].keypoints
- poly = [(p.x, p.y) for p in keypoints]
- return poly
|