123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/fcenet_targets.py
- """
- import cv2
- import numpy as np
- from numpy.fft import fft
- from numpy.linalg import norm
- import sys
- def vector_slope(vec):
- assert len(vec) == 2
- return abs(vec[1] / (vec[0] + 1e-8))
- class FCENetTargets:
- """Generate the ground truth targets of FCENet: Fourier Contour Embedding
- for Arbitrary-Shaped Text Detection.
- [https://arxiv.org/abs/2104.10442]
- Args:
- fourier_degree (int): The maximum Fourier transform degree k.
- resample_step (float): The step size for resampling the text center
- line (TCL). It's better not to exceed half of the minimum width.
- center_region_shrink_ratio (float): The shrink ratio of text center
- region.
- level_size_divisors (tuple(int)): The downsample ratio on each level.
- level_proportion_range (tuple(tuple(int))): The range of text sizes
- assigned to each level.
- """
- def __init__(self,
- fourier_degree=5,
- resample_step=4.0,
- center_region_shrink_ratio=0.3,
- level_size_divisors=(8, 16, 32),
- level_proportion_range=((0, 0.25), (0.2, 0.65), (0.55, 1.0)),
- orientation_thr=2.0,
- **kwargs):
- super().__init__()
- assert isinstance(level_size_divisors, tuple)
- assert isinstance(level_proportion_range, tuple)
- assert len(level_size_divisors) == len(level_proportion_range)
- self.fourier_degree = fourier_degree
- self.resample_step = resample_step
- self.center_region_shrink_ratio = center_region_shrink_ratio
- self.level_size_divisors = level_size_divisors
- self.level_proportion_range = level_proportion_range
- self.orientation_thr = orientation_thr
- def vector_angle(self, vec1, vec2):
- if vec1.ndim > 1:
- unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8).reshape((-1, 1))
- else:
- unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8)
- if vec2.ndim > 1:
- unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8).reshape((-1, 1))
- else:
- unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8)
- return np.arccos(
- np.clip(
- np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0))
- def resample_line(self, line, n):
- """Resample n points on a line.
- Args:
- line (ndarray): The points composing a line.
- n (int): The resampled points number.
- Returns:
- resampled_line (ndarray): The points composing the resampled line.
- """
- assert line.ndim == 2
- assert line.shape[0] >= 2
- assert line.shape[1] == 2
- assert isinstance(n, int)
- assert n > 0
- length_list = [
- norm(line[i + 1] - line[i]) for i in range(len(line) - 1)
- ]
- total_length = sum(length_list)
- length_cumsum = np.cumsum([0.0] + length_list)
- delta_length = total_length / (float(n) + 1e-8)
- current_edge_ind = 0
- resampled_line = [line[0]]
- for i in range(1, n):
- current_line_len = i * delta_length
- while current_edge_ind + 1 < len(length_cumsum) and current_line_len >= length_cumsum[current_edge_ind + 1]:
- current_edge_ind += 1
- current_edge_end_shift = current_line_len - length_cumsum[
- current_edge_ind]
- if current_edge_ind >= len(length_list):
- break
- end_shift_ratio = current_edge_end_shift / length_list[
- current_edge_ind]
- current_point = line[current_edge_ind] + (line[current_edge_ind + 1]
- - line[current_edge_ind]
- ) * end_shift_ratio
- resampled_line.append(current_point)
- resampled_line.append(line[-1])
- resampled_line = np.array(resampled_line)
- return resampled_line
- def reorder_poly_edge(self, points):
- """Get the respective points composing head edge, tail edge, top
- sideline and bottom sideline.
- Args:
- points (ndarray): The points composing a text polygon.
- Returns:
- head_edge (ndarray): The two points composing the head edge of text
- polygon.
- tail_edge (ndarray): The two points composing the tail edge of text
- polygon.
- top_sideline (ndarray): The points composing top curved sideline of
- text polygon.
- bot_sideline (ndarray): The points composing bottom curved sideline
- of text polygon.
- """
- assert points.ndim == 2
- assert points.shape[0] >= 4
- assert points.shape[1] == 2
- head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr)
- head_edge, tail_edge = points[head_inds], points[tail_inds]
- pad_points = np.vstack([points, points])
- if tail_inds[1] < 1:
- tail_inds[1] = len(points)
- sideline1 = pad_points[head_inds[1]:tail_inds[1]]
- sideline2 = pad_points[tail_inds[1]:(head_inds[1] + len(points))]
- sideline_mean_shift = np.mean(
- sideline1, axis=0) - np.mean(
- sideline2, axis=0)
- if sideline_mean_shift[1] > 0:
- top_sideline, bot_sideline = sideline2, sideline1
- else:
- top_sideline, bot_sideline = sideline1, sideline2
- return head_edge, tail_edge, top_sideline, bot_sideline
- def find_head_tail(self, points, orientation_thr):
- """Find the head edge and tail edge of a text polygon.
- Args:
- points (ndarray): The points composing a text polygon.
- orientation_thr (float): The threshold for distinguishing between
- head edge and tail edge among the horizontal and vertical edges
- of a quadrangle.
- Returns:
- head_inds (list): The indexes of two points composing head edge.
- tail_inds (list): The indexes of two points composing tail edge.
- """
- assert points.ndim == 2
- assert points.shape[0] >= 4
- assert points.shape[1] == 2
- assert isinstance(orientation_thr, float)
- if len(points) > 4:
- pad_points = np.vstack([points, points[0]])
- edge_vec = pad_points[1:] - pad_points[:-1]
- theta_sum = []
- adjacent_vec_theta = []
- for i, edge_vec1 in enumerate(edge_vec):
- adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]]
- adjacent_edge_vec = edge_vec[adjacent_ind]
- temp_theta_sum = np.sum(
- self.vector_angle(edge_vec1, adjacent_edge_vec))
- temp_adjacent_theta = self.vector_angle(adjacent_edge_vec[0],
- adjacent_edge_vec[1])
- theta_sum.append(temp_theta_sum)
- adjacent_vec_theta.append(temp_adjacent_theta)
- theta_sum_score = np.array(theta_sum) / np.pi
- adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi
- poly_center = np.mean(points, axis=0)
- edge_dist = np.maximum(
- norm(
- pad_points[1:] - poly_center, axis=-1),
- norm(
- pad_points[:-1] - poly_center, axis=-1))
- dist_score = edge_dist / np.max(edge_dist)
- position_score = np.zeros(len(edge_vec))
- score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score
- score += 0.35 * dist_score
- if len(points) % 2 == 0:
- position_score[(len(score) // 2 - 1)] += 1
- position_score[-1] += 1
- score += 0.1 * position_score
- pad_score = np.concatenate([score, score])
- score_matrix = np.zeros((len(score), len(score) - 3))
- x = np.arange(len(score) - 3) / float(len(score) - 4)
- gaussian = 1. / (np.sqrt(2. * np.pi) * 0.5) * np.exp(-np.power(
- (x - 0.5) / 0.5, 2.) / 2)
- gaussian = gaussian / np.max(gaussian)
- for i in range(len(score)):
- score_matrix[i, :] = score[i] + pad_score[(i + 2):(i + len(
- score) - 1)] * gaussian * 0.3
- head_start, tail_increment = np.unravel_index(score_matrix.argmax(),
- score_matrix.shape)
- tail_start = (head_start + tail_increment + 2) % len(points)
- head_end = (head_start + 1) % len(points)
- tail_end = (tail_start + 1) % len(points)
- if head_end > tail_end:
- head_start, tail_start = tail_start, head_start
- head_end, tail_end = tail_end, head_end
- head_inds = [head_start, head_end]
- tail_inds = [tail_start, tail_end]
- else:
- if vector_slope(points[1] - points[0]) + vector_slope(
- points[3] - points[2]) < vector_slope(points[
- 2] - points[1]) + vector_slope(points[0] - points[
- 3]):
- horizontal_edge_inds = [[0, 1], [2, 3]]
- vertical_edge_inds = [[3, 0], [1, 2]]
- else:
- horizontal_edge_inds = [[3, 0], [1, 2]]
- vertical_edge_inds = [[0, 1], [2, 3]]
- vertical_len_sum = norm(points[vertical_edge_inds[0][0]] - points[
- vertical_edge_inds[0][1]]) + norm(points[vertical_edge_inds[1][
- 0]] - points[vertical_edge_inds[1][1]])
- horizontal_len_sum = norm(points[horizontal_edge_inds[0][
- 0]] - points[horizontal_edge_inds[0][1]]) + norm(points[
- horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1]
- [1]])
- if vertical_len_sum > horizontal_len_sum * orientation_thr:
- head_inds = horizontal_edge_inds[0]
- tail_inds = horizontal_edge_inds[1]
- else:
- head_inds = vertical_edge_inds[0]
- tail_inds = vertical_edge_inds[1]
- return head_inds, tail_inds
- def resample_sidelines(self, sideline1, sideline2, resample_step):
- """Resample two sidelines to be of the same points number according to
- step size.
- Args:
- sideline1 (ndarray): The points composing a sideline of a text
- polygon.
- sideline2 (ndarray): The points composing another sideline of a
- text polygon.
- resample_step (float): The resampled step size.
- Returns:
- resampled_line1 (ndarray): The resampled line 1.
- resampled_line2 (ndarray): The resampled line 2.
- """
- assert sideline1.ndim == sideline2.ndim == 2
- assert sideline1.shape[1] == sideline2.shape[1] == 2
- assert sideline1.shape[0] >= 2
- assert sideline2.shape[0] >= 2
- assert isinstance(resample_step, float)
- length1 = sum([
- norm(sideline1[i + 1] - sideline1[i])
- for i in range(len(sideline1) - 1)
- ])
- length2 = sum([
- norm(sideline2[i + 1] - sideline2[i])
- for i in range(len(sideline2) - 1)
- ])
- total_length = (length1 + length2) / 2
- resample_point_num = max(int(float(total_length) / resample_step), 1)
- resampled_line1 = self.resample_line(sideline1, resample_point_num)
- resampled_line2 = self.resample_line(sideline2, resample_point_num)
- return resampled_line1, resampled_line2
- def generate_center_region_mask(self, img_size, text_polys):
- """Generate text center region mask.
- Args:
- img_size (tuple): The image size of (height, width).
- text_polys (list[list[ndarray]]): The list of text polygons.
- Returns:
- center_region_mask (ndarray): The text center region mask.
- """
- assert isinstance(img_size, tuple)
- # assert check_argument.is_2dlist(text_polys)
- h, w = img_size
- center_region_mask = np.zeros((h, w), np.uint8)
- center_region_boxes = []
- for poly in text_polys:
- # assert len(poly) == 1
- polygon_points = poly.reshape(-1, 2)
- _, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
- resampled_top_line, resampled_bot_line = self.resample_sidelines(
- top_line, bot_line, self.resample_step)
- resampled_bot_line = resampled_bot_line[::-1]
- if len(resampled_top_line) != len(resampled_bot_line):
- continue
- center_line = (resampled_top_line + resampled_bot_line) / 2
- line_head_shrink_len = norm(resampled_top_line[0] -
- resampled_bot_line[0]) / 4.0
- line_tail_shrink_len = norm(resampled_top_line[-1] -
- resampled_bot_line[-1]) / 4.0
- head_shrink_num = int(line_head_shrink_len // self.resample_step)
- tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
- if len(center_line) > head_shrink_num + tail_shrink_num + 2:
- center_line = center_line[head_shrink_num:len(center_line) -
- tail_shrink_num]
- resampled_top_line = resampled_top_line[head_shrink_num:len(
- resampled_top_line) - tail_shrink_num]
- resampled_bot_line = resampled_bot_line[head_shrink_num:len(
- resampled_bot_line) - tail_shrink_num]
- for i in range(0, len(center_line) - 1):
- tl = center_line[i] + (resampled_top_line[i] - center_line[i]
- ) * self.center_region_shrink_ratio
- tr = center_line[i + 1] + (resampled_top_line[i + 1] -
- center_line[i + 1]
- ) * self.center_region_shrink_ratio
- br = center_line[i + 1] + (resampled_bot_line[i + 1] -
- center_line[i + 1]
- ) * self.center_region_shrink_ratio
- bl = center_line[i] + (resampled_bot_line[i] - center_line[i]
- ) * self.center_region_shrink_ratio
- current_center_box = np.vstack([tl, tr, br,
- bl]).astype(np.int32)
- center_region_boxes.append(current_center_box)
- cv2.fillPoly(center_region_mask, center_region_boxes, 1)
- return center_region_mask
- def resample_polygon(self, polygon, n=400):
- """Resample one polygon with n points on its boundary.
- Args:
- polygon (list[float]): The input polygon.
- n (int): The number of resampled points.
- Returns:
- resampled_polygon (list[float]): The resampled polygon.
- """
- length = []
- for i in range(len(polygon)):
- p1 = polygon[i]
- if i == len(polygon) - 1:
- p2 = polygon[0]
- else:
- p2 = polygon[i + 1]
- length.append(((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5)
- total_length = sum(length)
- n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n
- n_on_each_line = n_on_each_line.astype(np.int32)
- new_polygon = []
- for i in range(len(polygon)):
- num = n_on_each_line[i]
- p1 = polygon[i]
- if i == len(polygon) - 1:
- p2 = polygon[0]
- else:
- p2 = polygon[i + 1]
- if num == 0:
- continue
- dxdy = (p2 - p1) / num
- for j in range(num):
- point = p1 + dxdy * j
- new_polygon.append(point)
- return np.array(new_polygon)
- def normalize_polygon(self, polygon):
- """Normalize one polygon so that its start point is at right most.
- Args:
- polygon (list[float]): The origin polygon.
- Returns:
- new_polygon (lost[float]): The polygon with start point at right.
- """
- temp_polygon = polygon - polygon.mean(axis=0)
- x = np.abs(temp_polygon[:, 0])
- y = temp_polygon[:, 1]
- index_x = np.argsort(x)
- index_y = np.argmin(y[index_x[:8]])
- index = index_x[index_y]
- new_polygon = np.concatenate([polygon[index:], polygon[:index]])
- return new_polygon
- def poly2fourier(self, polygon, fourier_degree):
- """Perform Fourier transformation to generate Fourier coefficients ck
- from polygon.
- Args:
- polygon (ndarray): An input polygon.
- fourier_degree (int): The maximum Fourier degree K.
- Returns:
- c (ndarray(complex)): Fourier coefficients.
- """
- points = polygon[:, 0] + polygon[:, 1] * 1j
- c_fft = fft(points) / len(points)
- c = np.hstack((c_fft[-fourier_degree:], c_fft[:fourier_degree + 1]))
- return c
- def clockwise(self, c, fourier_degree):
- """Make sure the polygon reconstructed from Fourier coefficients c in
- the clockwise direction.
- Args:
- polygon (list[float]): The origin polygon.
- Returns:
- new_polygon (lost[float]): The polygon in clockwise point order.
- """
- if np.abs(c[fourier_degree + 1]) > np.abs(c[fourier_degree - 1]):
- return c
- elif np.abs(c[fourier_degree + 1]) < np.abs(c[fourier_degree - 1]):
- return c[::-1]
- else:
- if np.abs(c[fourier_degree + 2]) > np.abs(c[fourier_degree - 2]):
- return c
- else:
- return c[::-1]
- def cal_fourier_signature(self, polygon, fourier_degree):
- """Calculate Fourier signature from input polygon.
- Args:
- polygon (ndarray): The input polygon.
- fourier_degree (int): The maximum Fourier degree K.
- Returns:
- fourier_signature (ndarray): An array shaped (2k+1, 2) containing
- real part and image part of 2k+1 Fourier coefficients.
- """
- resampled_polygon = self.resample_polygon(polygon)
- resampled_polygon = self.normalize_polygon(resampled_polygon)
- fourier_coeff = self.poly2fourier(resampled_polygon, fourier_degree)
- fourier_coeff = self.clockwise(fourier_coeff, fourier_degree)
- real_part = np.real(fourier_coeff).reshape((-1, 1))
- image_part = np.imag(fourier_coeff).reshape((-1, 1))
- fourier_signature = np.hstack([real_part, image_part])
- return fourier_signature
- def generate_fourier_maps(self, img_size, text_polys):
- """Generate Fourier coefficient maps.
- Args:
- img_size (tuple): The image size of (height, width).
- text_polys (list[list[ndarray]]): The list of text polygons.
- Returns:
- fourier_real_map (ndarray): The Fourier coefficient real part maps.
- fourier_image_map (ndarray): The Fourier coefficient image part
- maps.
- """
- assert isinstance(img_size, tuple)
- h, w = img_size
- k = self.fourier_degree
- real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
- imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
- for poly in text_polys:
- mask = np.zeros((h, w), dtype=np.uint8)
- polygon = np.array(poly).reshape((1, -1, 2))
- cv2.fillPoly(mask, polygon.astype(np.int32), 1)
- fourier_coeff = self.cal_fourier_signature(polygon[0], k)
- for i in range(-k, k + 1):
- if i != 0:
- real_map[i + k, :, :] = mask * fourier_coeff[i + k, 0] + (
- 1 - mask) * real_map[i + k, :, :]
- imag_map[i + k, :, :] = mask * fourier_coeff[i + k, 1] + (
- 1 - mask) * imag_map[i + k, :, :]
- else:
- yx = np.argwhere(mask > 0.5)
- k_ind = np.ones((len(yx)), dtype=np.int64) * k
- y, x = yx[:, 0], yx[:, 1]
- real_map[k_ind, y, x] = fourier_coeff[k, 0] - x
- imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y
- return real_map, imag_map
- def generate_text_region_mask(self, img_size, text_polys):
- """Generate text center region mask and geometry attribute maps.
- Args:
- img_size (tuple): The image size (height, width).
- text_polys (list[list[ndarray]]): The list of text polygons.
- Returns:
- text_region_mask (ndarray): The text region mask.
- """
- assert isinstance(img_size, tuple)
- h, w = img_size
- text_region_mask = np.zeros((h, w), dtype=np.uint8)
- for poly in text_polys:
- polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2))
- cv2.fillPoly(text_region_mask, polygon, 1)
- return text_region_mask
- def generate_effective_mask(self, mask_size: tuple, polygons_ignore):
- """Generate effective mask by setting the ineffective regions to 0 and
- effective regions to 1.
- Args:
- mask_size (tuple): The mask size.
- polygons_ignore (list[[ndarray]]: The list of ignored text
- polygons.
- Returns:
- mask (ndarray): The effective mask of (height, width).
- """
- mask = np.ones(mask_size, dtype=np.uint8)
- for poly in polygons_ignore:
- instance = poly.reshape(-1, 2).astype(np.int32).reshape(1, -1, 2)
- cv2.fillPoly(mask, instance, 0)
- return mask
- def generate_level_targets(self, img_size, text_polys, ignore_polys):
- """Generate ground truth target on each level.
- Args:
- img_size (list[int]): Shape of input image.
- text_polys (list[list[ndarray]]): A list of ground truth polygons.
- ignore_polys (list[list[ndarray]]): A list of ignored polygons.
- Returns:
- level_maps (list(ndarray)): A list of ground target on each level.
- """
- h, w = img_size
- lv_size_divs = self.level_size_divisors
- lv_proportion_range = self.level_proportion_range
- lv_text_polys = [[] for i in range(len(lv_size_divs))]
- lv_ignore_polys = [[] for i in range(len(lv_size_divs))]
- level_maps = []
- for poly in text_polys:
- polygon = np.array(poly, dtype=np.int).reshape((1, -1, 2))
- _, _, box_w, box_h = cv2.boundingRect(polygon)
- proportion = max(box_h, box_w) / (h + 1e-8)
- for ind, proportion_range in enumerate(lv_proportion_range):
- if proportion_range[0] < proportion < proportion_range[1]:
- lv_text_polys[ind].append(poly / lv_size_divs[ind])
- for ignore_poly in ignore_polys:
- polygon = np.array(ignore_poly, dtype=np.int).reshape((1, -1, 2))
- _, _, box_w, box_h = cv2.boundingRect(polygon)
- proportion = max(box_h, box_w) / (h + 1e-8)
- for ind, proportion_range in enumerate(lv_proportion_range):
- if proportion_range[0] < proportion < proportion_range[1]:
- lv_ignore_polys[ind].append(ignore_poly / lv_size_divs[ind])
- for ind, size_divisor in enumerate(lv_size_divs):
- current_level_maps = []
- level_img_size = (h // size_divisor, w // size_divisor)
- text_region = self.generate_text_region_mask(
- level_img_size, lv_text_polys[ind])[None]
- current_level_maps.append(text_region)
- center_region = self.generate_center_region_mask(
- level_img_size, lv_text_polys[ind])[None]
- current_level_maps.append(center_region)
- effective_mask = self.generate_effective_mask(
- level_img_size, lv_ignore_polys[ind])[None]
- current_level_maps.append(effective_mask)
- fourier_real_map, fourier_image_maps = self.generate_fourier_maps(
- level_img_size, lv_text_polys[ind])
- current_level_maps.append(fourier_real_map)
- current_level_maps.append(fourier_image_maps)
- level_maps.append(np.concatenate(current_level_maps))
- return level_maps
- def generate_targets(self, results):
- """Generate the ground truth targets for FCENet.
- Args:
- results (dict): The input result dictionary.
- Returns:
- results (dict): The output result dictionary.
- """
- assert isinstance(results, dict)
- image = results['image']
- polygons = results['polys']
- ignore_tags = results['ignore_tags']
- h, w, _ = image.shape
- polygon_masks = []
- polygon_masks_ignore = []
- for tag, polygon in zip(ignore_tags, polygons):
- if tag is True:
- polygon_masks_ignore.append(polygon)
- else:
- polygon_masks.append(polygon)
- level_maps = self.generate_level_targets((h, w), polygon_masks,
- polygon_masks_ignore)
- mapping = {
- 'p3_maps': level_maps[0],
- 'p4_maps': level_maps[1],
- 'p5_maps': level_maps[2]
- }
- for key, value in mapping.items():
- results[key] = value
- return results
- def __call__(self, results):
- results = self.generate_targets(results)
- return results
|