123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/transforms.py
- """
- import numpy as np
- from PIL import Image, ImageDraw
- import cv2
- from shapely.geometry import Polygon
- import math
- from ppocr.utils.poly_nms import poly_intersection
- class RandomScaling:
- def __init__(self, size=800, scale=(3. / 4, 5. / 2), **kwargs):
- """Random scale the image while keeping aspect.
- Args:
- size (int) : Base size before scaling.
- scale (tuple(float)) : The range of scaling.
- """
- assert isinstance(size, int)
- assert isinstance(scale, float) or isinstance(scale, tuple)
- self.size = size
- self.scale = scale if isinstance(scale, tuple) \
- else (1 - scale, 1 + scale)
- def __call__(self, data):
- image = data['image']
- text_polys = data['polys']
- h, w, _ = image.shape
- aspect_ratio = np.random.uniform(min(self.scale), max(self.scale))
- scales = self.size * 1.0 / max(h, w) * aspect_ratio
- scales = np.array([scales, scales])
- out_size = (int(h * scales[1]), int(w * scales[0]))
- image = cv2.resize(image, out_size[::-1])
- data['image'] = image
- text_polys[:, :, 0::2] = text_polys[:, :, 0::2] * scales[1]
- text_polys[:, :, 1::2] = text_polys[:, :, 1::2] * scales[0]
- data['polys'] = text_polys
- return data
- class RandomCropFlip:
- def __init__(self,
- pad_ratio=0.1,
- crop_ratio=0.5,
- iter_num=1,
- min_area_ratio=0.2,
- **kwargs):
- """Random crop and flip a patch of the image.
- Args:
- crop_ratio (float): The ratio of cropping.
- iter_num (int): Number of operations.
- min_area_ratio (float): Minimal area ratio between cropped patch
- and original image.
- """
- assert isinstance(crop_ratio, float)
- assert isinstance(iter_num, int)
- assert isinstance(min_area_ratio, float)
- self.pad_ratio = pad_ratio
- self.epsilon = 1e-2
- self.crop_ratio = crop_ratio
- self.iter_num = iter_num
- self.min_area_ratio = min_area_ratio
- def __call__(self, results):
- for i in range(self.iter_num):
- results = self.random_crop_flip(results)
- return results
- def random_crop_flip(self, results):
- image = results['image']
- polygons = results['polys']
- ignore_tags = results['ignore_tags']
- if len(polygons) == 0:
- return results
- if np.random.random() >= self.crop_ratio:
- return results
- h, w, _ = image.shape
- area = h * w
- pad_h = int(h * self.pad_ratio)
- pad_w = int(w * self.pad_ratio)
- h_axis, w_axis = self.generate_crop_target(image, polygons, pad_h,
- pad_w)
- if len(h_axis) == 0 or len(w_axis) == 0:
- return results
- attempt = 0
- while attempt < 50:
- attempt += 1
- polys_keep = []
- polys_new = []
- ignore_tags_keep = []
- ignore_tags_new = []
- xx = np.random.choice(w_axis, size=2)
- xmin = np.min(xx) - pad_w
- xmax = np.max(xx) - pad_w
- xmin = np.clip(xmin, 0, w - 1)
- xmax = np.clip(xmax, 0, w - 1)
- yy = np.random.choice(h_axis, size=2)
- ymin = np.min(yy) - pad_h
- ymax = np.max(yy) - pad_h
- ymin = np.clip(ymin, 0, h - 1)
- ymax = np.clip(ymax, 0, h - 1)
- if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio:
- # area too small
- continue
- pts = np.stack([[xmin, xmax, xmax, xmin],
- [ymin, ymin, ymax, ymax]]).T.astype(np.int32)
- pp = Polygon(pts)
- fail_flag = False
- for polygon, ignore_tag in zip(polygons, ignore_tags):
- ppi = Polygon(polygon.reshape(-1, 2))
- ppiou, _ = poly_intersection(ppi, pp, buffer=0)
- if np.abs(ppiou - float(ppi.area)) > self.epsilon and \
- np.abs(ppiou) > self.epsilon:
- fail_flag = True
- break
- elif np.abs(ppiou - float(ppi.area)) < self.epsilon:
- polys_new.append(polygon)
- ignore_tags_new.append(ignore_tag)
- else:
- polys_keep.append(polygon)
- ignore_tags_keep.append(ignore_tag)
- if fail_flag:
- continue
- else:
- break
- cropped = image[ymin:ymax, xmin:xmax, :]
- select_type = np.random.randint(3)
- if select_type == 0:
- img = np.ascontiguousarray(cropped[:, ::-1])
- elif select_type == 1:
- img = np.ascontiguousarray(cropped[::-1, :])
- else:
- img = np.ascontiguousarray(cropped[::-1, ::-1])
- image[ymin:ymax, xmin:xmax, :] = img
- results['img'] = image
- if len(polys_new) != 0:
- height, width, _ = cropped.shape
- if select_type == 0:
- for idx, polygon in enumerate(polys_new):
- poly = polygon.reshape(-1, 2)
- poly[:, 0] = width - poly[:, 0] + 2 * xmin
- polys_new[idx] = poly
- elif select_type == 1:
- for idx, polygon in enumerate(polys_new):
- poly = polygon.reshape(-1, 2)
- poly[:, 1] = height - poly[:, 1] + 2 * ymin
- polys_new[idx] = poly
- else:
- for idx, polygon in enumerate(polys_new):
- poly = polygon.reshape(-1, 2)
- poly[:, 0] = width - poly[:, 0] + 2 * xmin
- poly[:, 1] = height - poly[:, 1] + 2 * ymin
- polys_new[idx] = poly
- polygons = polys_keep + polys_new
- ignore_tags = ignore_tags_keep + ignore_tags_new
- results['polys'] = np.array(polygons)
- results['ignore_tags'] = ignore_tags
- return results
- def generate_crop_target(self, image, all_polys, pad_h, pad_w):
- """Generate crop target and make sure not to crop the polygon
- instances.
- Args:
- image (ndarray): The image waited to be crop.
- all_polys (list[list[ndarray]]): All polygons including ground
- truth polygons and ground truth ignored polygons.
- pad_h (int): Padding length of height.
- pad_w (int): Padding length of width.
- Returns:
- h_axis (ndarray): Vertical cropping range.
- w_axis (ndarray): Horizontal cropping range.
- """
- h, w, _ = image.shape
- h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
- w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
- text_polys = []
- for polygon in all_polys:
- rect = cv2.minAreaRect(polygon.astype(np.int32).reshape(-1, 2))
- box = cv2.boxPoints(rect)
- box = np.int0(box)
- text_polys.append([box[0], box[1], box[2], box[3]])
- polys = np.array(text_polys, dtype=np.int32)
- for poly in polys:
- poly = np.round(poly, decimals=0).astype(np.int32)
- minx = np.min(poly[:, 0])
- maxx = np.max(poly[:, 0])
- w_array[minx + pad_w:maxx + pad_w] = 1
- miny = np.min(poly[:, 1])
- maxy = np.max(poly[:, 1])
- h_array[miny + pad_h:maxy + pad_h] = 1
- h_axis = np.where(h_array == 0)[0]
- w_axis = np.where(w_array == 0)[0]
- return h_axis, w_axis
- class RandomCropPolyInstances:
- """Randomly crop images and make sure to contain at least one intact
- instance."""
- def __init__(self, crop_ratio=5.0 / 8.0, min_side_ratio=0.4, **kwargs):
- super().__init__()
- self.crop_ratio = crop_ratio
- self.min_side_ratio = min_side_ratio
- def sample_valid_start_end(self, valid_array, min_len, max_start, min_end):
- assert isinstance(min_len, int)
- assert len(valid_array) > min_len
- start_array = valid_array.copy()
- max_start = min(len(start_array) - min_len, max_start)
- start_array[max_start:] = 0
- start_array[0] = 1
- diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0])
- region_starts = np.where(diff_array < 0)[0]
- region_ends = np.where(diff_array > 0)[0]
- region_ind = np.random.randint(0, len(region_starts))
- start = np.random.randint(region_starts[region_ind],
- region_ends[region_ind])
- end_array = valid_array.copy()
- min_end = max(start + min_len, min_end)
- end_array[:min_end] = 0
- end_array[-1] = 1
- diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0])
- region_starts = np.where(diff_array < 0)[0]
- region_ends = np.where(diff_array > 0)[0]
- region_ind = np.random.randint(0, len(region_starts))
- end = np.random.randint(region_starts[region_ind],
- region_ends[region_ind])
- return start, end
- def sample_crop_box(self, img_size, results):
- """Generate crop box and make sure not to crop the polygon instances.
- Args:
- img_size (tuple(int)): The image size (h, w).
- results (dict): The results dict.
- """
- assert isinstance(img_size, tuple)
- h, w = img_size[:2]
- key_masks = results['polys']
- x_valid_array = np.ones(w, dtype=np.int32)
- y_valid_array = np.ones(h, dtype=np.int32)
- selected_mask = key_masks[np.random.randint(0, len(key_masks))]
- selected_mask = selected_mask.reshape((-1, 2)).astype(np.int32)
- max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0)
- min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1)
- max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0)
- min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1)
- for mask in key_masks:
- mask = mask.reshape((-1, 2)).astype(np.int32)
- clip_x = np.clip(mask[:, 0], 0, w - 1)
- clip_y = np.clip(mask[:, 1], 0, h - 1)
- min_x, max_x = np.min(clip_x), np.max(clip_x)
- min_y, max_y = np.min(clip_y), np.max(clip_y)
- x_valid_array[min_x - 2:max_x + 3] = 0
- y_valid_array[min_y - 2:max_y + 3] = 0
- min_w = int(w * self.min_side_ratio)
- min_h = int(h * self.min_side_ratio)
- x1, x2 = self.sample_valid_start_end(x_valid_array, min_w, max_x_start,
- min_x_end)
- y1, y2 = self.sample_valid_start_end(y_valid_array, min_h, max_y_start,
- min_y_end)
- return np.array([x1, y1, x2, y2])
- def crop_img(self, img, bbox):
- assert img.ndim == 3
- h, w, _ = img.shape
- assert 0 <= bbox[1] < bbox[3] <= h
- assert 0 <= bbox[0] < bbox[2] <= w
- return img[bbox[1]:bbox[3], bbox[0]:bbox[2]]
- def __call__(self, results):
- image = results['image']
- polygons = results['polys']
- ignore_tags = results['ignore_tags']
- if len(polygons) < 1:
- return results
- if np.random.random_sample() < self.crop_ratio:
- crop_box = self.sample_crop_box(image.shape, results)
- img = self.crop_img(image, crop_box)
- results['image'] = img
- # crop and filter masks
- x1, y1, x2, y2 = crop_box
- w = max(x2 - x1, 1)
- h = max(y2 - y1, 1)
- polygons[:, :, 0::2] = polygons[:, :, 0::2] - x1
- polygons[:, :, 1::2] = polygons[:, :, 1::2] - y1
- valid_masks_list = []
- valid_tags_list = []
- for ind, polygon in enumerate(polygons):
- if (polygon[:, ::2] > -4).all() and (
- polygon[:, ::2] < w + 4).all() and (
- polygon[:, 1::2] > -4).all() and (
- polygon[:, 1::2] < h + 4).all():
- polygon[:, ::2] = np.clip(polygon[:, ::2], 0, w)
- polygon[:, 1::2] = np.clip(polygon[:, 1::2], 0, h)
- valid_masks_list.append(polygon)
- valid_tags_list.append(ignore_tags[ind])
- results['polys'] = np.array(valid_masks_list)
- results['ignore_tags'] = valid_tags_list
- return results
- def __repr__(self):
- repr_str = self.__class__.__name__
- return repr_str
- class RandomRotatePolyInstances:
- def __init__(self,
- rotate_ratio=0.5,
- max_angle=10,
- pad_with_fixed_color=False,
- pad_value=(0, 0, 0),
- **kwargs):
- """Randomly rotate images and polygon masks.
- Args:
- rotate_ratio (float): The ratio of samples to operate rotation.
- max_angle (int): The maximum rotation angle.
- pad_with_fixed_color (bool): The flag for whether to pad rotated
- image with fixed value. If set to False, the rotated image will
- be padded onto cropped image.
- pad_value (tuple(int)): The color value for padding rotated image.
- """
- self.rotate_ratio = rotate_ratio
- self.max_angle = max_angle
- self.pad_with_fixed_color = pad_with_fixed_color
- self.pad_value = pad_value
- def rotate(self, center, points, theta, center_shift=(0, 0)):
- # rotate points.
- (center_x, center_y) = center
- center_y = -center_y
- x, y = points[:, ::2], points[:, 1::2]
- y = -y
- theta = theta / 180 * math.pi
- cos = math.cos(theta)
- sin = math.sin(theta)
- x = (x - center_x)
- y = (y - center_y)
- _x = center_x + x * cos - y * sin + center_shift[0]
- _y = -(center_y + x * sin + y * cos) + center_shift[1]
- points[:, ::2], points[:, 1::2] = _x, _y
- return points
- def cal_canvas_size(self, ori_size, degree):
- assert isinstance(ori_size, tuple)
- angle = degree * math.pi / 180.0
- h, w = ori_size[:2]
- cos = math.cos(angle)
- sin = math.sin(angle)
- canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos))
- canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin))
- canvas_size = (canvas_h, canvas_w)
- return canvas_size
- def sample_angle(self, max_angle):
- angle = np.random.random_sample() * 2 * max_angle - max_angle
- return angle
- def rotate_img(self, img, angle, canvas_size):
- h, w = img.shape[:2]
- rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
- rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2)
- rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2)
- if self.pad_with_fixed_color:
- target_img = cv2.warpAffine(
- img,
- rotation_matrix, (canvas_size[1], canvas_size[0]),
- flags=cv2.INTER_NEAREST,
- borderValue=self.pad_value)
- else:
- mask = np.zeros_like(img)
- (h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
- np.random.randint(0, w * 7 // 8))
- img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
- img_cut = cv2.resize(img_cut, (canvas_size[1], canvas_size[0]))
- mask = cv2.warpAffine(
- mask,
- rotation_matrix, (canvas_size[1], canvas_size[0]),
- borderValue=[1, 1, 1])
- target_img = cv2.warpAffine(
- img,
- rotation_matrix, (canvas_size[1], canvas_size[0]),
- borderValue=[0, 0, 0])
- target_img = target_img + img_cut * mask
- return target_img
- def __call__(self, results):
- if np.random.random_sample() < self.rotate_ratio:
- image = results['image']
- polygons = results['polys']
- h, w = image.shape[:2]
- angle = self.sample_angle(self.max_angle)
- canvas_size = self.cal_canvas_size((h, w), angle)
- center_shift = (int((canvas_size[1] - w) / 2), int(
- (canvas_size[0] - h) / 2))
- image = self.rotate_img(image, angle, canvas_size)
- results['image'] = image
- # rotate polygons
- rotated_masks = []
- for mask in polygons:
- rotated_mask = self.rotate((w / 2, h / 2), mask, angle,
- center_shift)
- rotated_masks.append(rotated_mask)
- results['polys'] = np.array(rotated_masks)
- return results
- def __repr__(self):
- repr_str = self.__class__.__name__
- return repr_str
- class SquareResizePad:
- def __init__(self,
- target_size,
- pad_ratio=0.6,
- pad_with_fixed_color=False,
- pad_value=(0, 0, 0),
- **kwargs):
- """Resize or pad images to be square shape.
- Args:
- target_size (int): The target size of square shaped image.
- pad_with_fixed_color (bool): The flag for whether to pad rotated
- image with fixed value. If set to False, the rescales image will
- be padded onto cropped image.
- pad_value (tuple(int)): The color value for padding rotated image.
- """
- assert isinstance(target_size, int)
- assert isinstance(pad_ratio, float)
- assert isinstance(pad_with_fixed_color, bool)
- assert isinstance(pad_value, tuple)
- self.target_size = target_size
- self.pad_ratio = pad_ratio
- self.pad_with_fixed_color = pad_with_fixed_color
- self.pad_value = pad_value
- def resize_img(self, img, keep_ratio=True):
- h, w, _ = img.shape
- if keep_ratio:
- t_h = self.target_size if h >= w else int(h * self.target_size / w)
- t_w = self.target_size if h <= w else int(w * self.target_size / h)
- else:
- t_h = t_w = self.target_size
- img = cv2.resize(img, (t_w, t_h))
- return img, (t_h, t_w)
- def square_pad(self, img):
- h, w = img.shape[:2]
- if h == w:
- return img, (0, 0)
- pad_size = max(h, w)
- if self.pad_with_fixed_color:
- expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8)
- expand_img[:] = self.pad_value
- else:
- (h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
- np.random.randint(0, w * 7 // 8))
- img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
- expand_img = cv2.resize(img_cut, (pad_size, pad_size))
- if h > w:
- y0, x0 = 0, (h - w) // 2
- else:
- y0, x0 = (w - h) // 2, 0
- expand_img[y0:y0 + h, x0:x0 + w] = img
- offset = (x0, y0)
- return expand_img, offset
- def square_pad_mask(self, points, offset):
- x0, y0 = offset
- pad_points = points.copy()
- pad_points[::2] = pad_points[::2] + x0
- pad_points[1::2] = pad_points[1::2] + y0
- return pad_points
- def __call__(self, results):
- image = results['image']
- polygons = results['polys']
- h, w = image.shape[:2]
- if np.random.random_sample() < self.pad_ratio:
- image, out_size = self.resize_img(image, keep_ratio=True)
- image, offset = self.square_pad(image)
- else:
- image, out_size = self.resize_img(image, keep_ratio=False)
- offset = (0, 0)
- results['image'] = image
- try:
- polygons[:, :, 0::2] = polygons[:, :, 0::2] * out_size[
- 1] / w + offset[0]
- polygons[:, :, 1::2] = polygons[:, :, 1::2] * out_size[
- 0] / h + offset[1]
- except:
- pass
- results['polys'] = polygons
- return results
- def __repr__(self):
- repr_str = self.__class__.__name__
- return repr_str
|