123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/FangShancheng/ABINet/blob/main/transforms.py
- """
- import math
- import numbers
- import random
- import cv2
- import numpy as np
- from paddle.vision.transforms import Compose, ColorJitter
- def sample_asym(magnitude, size=None):
- return np.random.beta(1, 4, size) * magnitude
- def sample_sym(magnitude, size=None):
- return (np.random.beta(4, 4, size=size) - 0.5) * 2 * magnitude
- def sample_uniform(low, high, size=None):
- return np.random.uniform(low, high, size=size)
- def get_interpolation(type='random'):
- if type == 'random':
- choice = [
- cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA
- ]
- interpolation = choice[random.randint(0, len(choice) - 1)]
- elif type == 'nearest':
- interpolation = cv2.INTER_NEAREST
- elif type == 'linear':
- interpolation = cv2.INTER_LINEAR
- elif type == 'cubic':
- interpolation = cv2.INTER_CUBIC
- elif type == 'area':
- interpolation = cv2.INTER_AREA
- else:
- raise TypeError(
- 'Interpolation types only nearest, linear, cubic, area are supported!'
- )
- return interpolation
- class CVRandomRotation(object):
- def __init__(self, degrees=15):
- assert isinstance(degrees,
- numbers.Number), "degree should be a single number."
- assert degrees >= 0, "degree must be positive."
- self.degrees = degrees
- @staticmethod
- def get_params(degrees):
- return sample_sym(degrees)
- def __call__(self, img):
- angle = self.get_params(self.degrees)
- src_h, src_w = img.shape[:2]
- M = cv2.getRotationMatrix2D(
- center=(src_w / 2, src_h / 2), angle=angle, scale=1.0)
- abs_cos, abs_sin = abs(M[0, 0]), abs(M[0, 1])
- dst_w = int(src_h * abs_sin + src_w * abs_cos)
- dst_h = int(src_h * abs_cos + src_w * abs_sin)
- M[0, 2] += (dst_w - src_w) / 2
- M[1, 2] += (dst_h - src_h) / 2
- flags = get_interpolation()
- return cv2.warpAffine(
- img,
- M, (dst_w, dst_h),
- flags=flags,
- borderMode=cv2.BORDER_REPLICATE)
- class CVRandomAffine(object):
- def __init__(self, degrees, translate=None, scale=None, shear=None):
- assert isinstance(degrees,
- numbers.Number), "degree should be a single number."
- assert degrees >= 0, "degree must be positive."
- self.degrees = degrees
- if translate is not None:
- assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
- "translate should be a list or tuple and it must be of length 2."
- for t in translate:
- if not (0.0 <= t <= 1.0):
- raise ValueError(
- "translation values should be between 0 and 1")
- self.translate = translate
- if scale is not None:
- assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
- "scale should be a list or tuple and it must be of length 2."
- for s in scale:
- if s <= 0:
- raise ValueError("scale values should be positive")
- self.scale = scale
- if shear is not None:
- if isinstance(shear, numbers.Number):
- if shear < 0:
- raise ValueError(
- "If shear is a single number, it must be positive.")
- self.shear = [shear]
- else:
- assert isinstance(shear, (tuple, list)) and (len(shear) == 2), \
- "shear should be a list or tuple and it must be of length 2."
- self.shear = shear
- else:
- self.shear = shear
- def _get_inverse_affine_matrix(self, center, angle, translate, scale,
- shear):
- # https://github.com/pytorch/vision/blob/v0.4.0/torchvision/transforms/functional.py#L717
- from numpy import sin, cos, tan
- if isinstance(shear, numbers.Number):
- shear = [shear, 0]
- if not isinstance(shear, (tuple, list)) and len(shear) == 2:
- raise ValueError(
- "Shear should be a single value or a tuple/list containing " +
- "two values. Got {}".format(shear))
- rot = math.radians(angle)
- sx, sy = [math.radians(s) for s in shear]
- cx, cy = center
- tx, ty = translate
- # RSS without scaling
- a = cos(rot - sy) / cos(sy)
- b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
- c = sin(rot - sy) / cos(sy)
- d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
- # Inverted rotation matrix with scale and shear
- # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
- M = [d, -b, 0, -c, a, 0]
- M = [x / scale for x in M]
- # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
- M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
- M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)
- # Apply center translation: C * RSS^-1 * C^-1 * T^-1
- M[2] += cx
- M[5] += cy
- return M
- @staticmethod
- def get_params(degrees, translate, scale_ranges, shears, height):
- angle = sample_sym(degrees)
- if translate is not None:
- max_dx = translate[0] * height
- max_dy = translate[1] * height
- translations = (np.round(sample_sym(max_dx)),
- np.round(sample_sym(max_dy)))
- else:
- translations = (0, 0)
- if scale_ranges is not None:
- scale = sample_uniform(scale_ranges[0], scale_ranges[1])
- else:
- scale = 1.0
- if shears is not None:
- if len(shears) == 1:
- shear = [sample_sym(shears[0]), 0.]
- elif len(shears) == 2:
- shear = [sample_sym(shears[0]), sample_sym(shears[1])]
- else:
- shear = 0.0
- return angle, translations, scale, shear
- def __call__(self, img):
- src_h, src_w = img.shape[:2]
- angle, translate, scale, shear = self.get_params(
- self.degrees, self.translate, self.scale, self.shear, src_h)
- M = self._get_inverse_affine_matrix((src_w / 2, src_h / 2), angle,
- (0, 0), scale, shear)
- M = np.array(M).reshape(2, 3)
- startpoints = [(0, 0), (src_w - 1, 0), (src_w - 1, src_h - 1),
- (0, src_h - 1)]
- project = lambda x, y, a, b, c: int(a * x + b * y + c)
- endpoints = [(project(x, y, *M[0]), project(x, y, *M[1]))
- for x, y in startpoints]
- rect = cv2.minAreaRect(np.array(endpoints))
- bbox = cv2.boxPoints(rect).astype(dtype=np.int)
- max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max()
- min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min()
- dst_w = int(max_x - min_x)
- dst_h = int(max_y - min_y)
- M[0, 2] += (dst_w - src_w) / 2
- M[1, 2] += (dst_h - src_h) / 2
- # add translate
- dst_w += int(abs(translate[0]))
- dst_h += int(abs(translate[1]))
- if translate[0] < 0: M[0, 2] += abs(translate[0])
- if translate[1] < 0: M[1, 2] += abs(translate[1])
- flags = get_interpolation()
- return cv2.warpAffine(
- img,
- M, (dst_w, dst_h),
- flags=flags,
- borderMode=cv2.BORDER_REPLICATE)
- class CVRandomPerspective(object):
- def __init__(self, distortion=0.5):
- self.distortion = distortion
- def get_params(self, width, height, distortion):
- offset_h = sample_asym(
- distortion * height / 2, size=4).astype(dtype=np.int)
- offset_w = sample_asym(
- distortion * width / 2, size=4).astype(dtype=np.int)
- topleft = (offset_w[0], offset_h[0])
- topright = (width - 1 - offset_w[1], offset_h[1])
- botright = (width - 1 - offset_w[2], height - 1 - offset_h[2])
- botleft = (offset_w[3], height - 1 - offset_h[3])
- startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1),
- (0, height - 1)]
- endpoints = [topleft, topright, botright, botleft]
- return np.array(
- startpoints, dtype=np.float32), np.array(
- endpoints, dtype=np.float32)
- def __call__(self, img):
- height, width = img.shape[:2]
- startpoints, endpoints = self.get_params(width, height, self.distortion)
- M = cv2.getPerspectiveTransform(startpoints, endpoints)
- # TODO: more robust way to crop image
- rect = cv2.minAreaRect(endpoints)
- bbox = cv2.boxPoints(rect).astype(dtype=np.int)
- max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max()
- min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min()
- min_x, min_y = max(min_x, 0), max(min_y, 0)
- flags = get_interpolation()
- img = cv2.warpPerspective(
- img,
- M, (max_x, max_y),
- flags=flags,
- borderMode=cv2.BORDER_REPLICATE)
- img = img[min_y:, min_x:]
- return img
- class CVRescale(object):
- def __init__(self, factor=4, base_size=(128, 512)):
- """ Define image scales using gaussian pyramid and rescale image to target scale.
-
- Args:
- factor: the decayed factor from base size, factor=4 keeps target scale by default.
- base_size: base size the build the bottom layer of pyramid
- """
- if isinstance(factor, numbers.Number):
- self.factor = round(sample_uniform(0, factor))
- elif isinstance(factor, (tuple, list)) and len(factor) == 2:
- self.factor = round(sample_uniform(factor[0], factor[1]))
- else:
- raise Exception('factor must be number or list with length 2')
- # assert factor is valid
- self.base_h, self.base_w = base_size[:2]
- def __call__(self, img):
- if self.factor == 0: return img
- src_h, src_w = img.shape[:2]
- cur_w, cur_h = self.base_w, self.base_h
- scale_img = cv2.resize(
- img, (cur_w, cur_h), interpolation=get_interpolation())
- for _ in range(self.factor):
- scale_img = cv2.pyrDown(scale_img)
- scale_img = cv2.resize(
- scale_img, (src_w, src_h), interpolation=get_interpolation())
- return scale_img
- class CVGaussianNoise(object):
- def __init__(self, mean=0, var=20):
- self.mean = mean
- if isinstance(var, numbers.Number):
- self.var = max(int(sample_asym(var)), 1)
- elif isinstance(var, (tuple, list)) and len(var) == 2:
- self.var = int(sample_uniform(var[0], var[1]))
- else:
- raise Exception('degree must be number or list with length 2')
- def __call__(self, img):
- noise = np.random.normal(self.mean, self.var**0.5, img.shape)
- img = np.clip(img + noise, 0, 255).astype(np.uint8)
- return img
- class CVMotionBlur(object):
- def __init__(self, degrees=12, angle=90):
- if isinstance(degrees, numbers.Number):
- self.degree = max(int(sample_asym(degrees)), 1)
- elif isinstance(degrees, (tuple, list)) and len(degrees) == 2:
- self.degree = int(sample_uniform(degrees[0], degrees[1]))
- else:
- raise Exception('degree must be number or list with length 2')
- self.angle = sample_uniform(-angle, angle)
- def __call__(self, img):
- M = cv2.getRotationMatrix2D((self.degree // 2, self.degree // 2),
- self.angle, 1)
- motion_blur_kernel = np.zeros((self.degree, self.degree))
- motion_blur_kernel[self.degree // 2, :] = 1
- motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M,
- (self.degree, self.degree))
- motion_blur_kernel = motion_blur_kernel / self.degree
- img = cv2.filter2D(img, -1, motion_blur_kernel)
- img = np.clip(img, 0, 255).astype(np.uint8)
- return img
- class CVGeometry(object):
- def __init__(self,
- degrees=15,
- translate=(0.3, 0.3),
- scale=(0.5, 2.),
- shear=(45, 15),
- distortion=0.5,
- p=0.5):
- self.p = p
- type_p = random.random()
- if type_p < 0.33:
- self.transforms = CVRandomRotation(degrees=degrees)
- elif type_p < 0.66:
- self.transforms = CVRandomAffine(
- degrees=degrees, translate=translate, scale=scale, shear=shear)
- else:
- self.transforms = CVRandomPerspective(distortion=distortion)
- def __call__(self, img):
- if random.random() < self.p:
- return self.transforms(img)
- else:
- return img
- class CVDeterioration(object):
- def __init__(self, var, degrees, factor, p=0.5):
- self.p = p
- transforms = []
- if var is not None:
- transforms.append(CVGaussianNoise(var=var))
- if degrees is not None:
- transforms.append(CVMotionBlur(degrees=degrees))
- if factor is not None:
- transforms.append(CVRescale(factor=factor))
- random.shuffle(transforms)
- transforms = Compose(transforms)
- self.transforms = transforms
- def __call__(self, img):
- if random.random() < self.p:
- return self.transforms(img)
- else:
- return img
- class CVColorJitter(object):
- def __init__(self,
- brightness=0.5,
- contrast=0.5,
- saturation=0.5,
- hue=0.1,
- p=0.5):
- self.p = p
- self.transforms = ColorJitter(
- brightness=brightness,
- contrast=contrast,
- saturation=saturation,
- hue=hue)
- def __call__(self, img):
- if random.random() < self.p: return self.transforms(img)
- else: return img
- class SVTRDeterioration(object):
- def __init__(self, var, degrees, factor, p=0.5):
- self.p = p
- transforms = []
- if var is not None:
- transforms.append(CVGaussianNoise(var=var))
- if degrees is not None:
- transforms.append(CVMotionBlur(degrees=degrees))
- if factor is not None:
- transforms.append(CVRescale(factor=factor))
- self.transforms = transforms
- def __call__(self, img):
- if random.random() < self.p:
- random.shuffle(self.transforms)
- transforms = Compose(self.transforms)
- return transforms(img)
- else:
- return img
- class SVTRGeometry(object):
- def __init__(self,
- aug_type=0,
- degrees=15,
- translate=(0.3, 0.3),
- scale=(0.5, 2.),
- shear=(45, 15),
- distortion=0.5,
- p=0.5):
- self.aug_type = aug_type
- self.p = p
- self.transforms = []
- self.transforms.append(CVRandomRotation(degrees=degrees))
- self.transforms.append(CVRandomAffine(
- degrees=degrees, translate=translate, scale=scale, shear=shear))
- self.transforms.append(CVRandomPerspective(distortion=distortion))
- def __call__(self, img):
- if random.random() < self.p:
- if self.aug_type:
- random.shuffle(self.transforms)
- transforms = Compose(self.transforms[:random.randint(1, 3)])
- img = transforms(img)
- else:
- img = self.transforms[random.randint(0, 2)](img)
- return img
- else:
- return img
|