12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- try:
- from paddle_serving_server_gpu.pipeline import PipelineClient
- except ImportError:
- from paddle_serving_server.pipeline import PipelineClient
- import numpy as np
- import requests
- import json
- import cv2
- import base64
- import os
- client = PipelineClient()
- client.connect(['127.0.0.1:18091'])
- def cv2_to_base64(image):
- return base64.b64encode(image).decode('utf8')
- import argparse
- parser = argparse.ArgumentParser(description="args for paddleserving")
- parser.add_argument("--image_dir", type=str, default="../../doc/imgs/")
- args = parser.parse_args()
- test_img_dir = args.image_dir
- for img_file in os.listdir(test_img_dir):
- with open(os.path.join(test_img_dir, img_file), 'rb') as file:
- image_data = file.read()
- image = cv2_to_base64(image_data)
- for i in range(1):
- ret = client.predict(feed_dict={"image": image}, fetch=["res"])
- print(ret)
|