123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- sys.path.insert(0, ".")
- import copy
- import time
- import paddlehub
- from paddlehub.common.logger import logger
- from paddlehub.module.module import moduleinfo, runnable, serving
- import cv2
- import numpy as np
- import paddlehub as hub
- from tools.infer.utility import base64_to_cv2
- from ppstructure.kie.predict_kie_token_ser import SerPredictor
- from ppstructure.utility import parse_args
- from deploy.hubserving.kie_ser.params import read_params
- @moduleinfo(
- name="kie_ser",
- version="1.0.0",
- summary="kie ser service",
- author="paddle-dev",
- author_email="paddle-dev@baidu.com",
- type="cv/KIE_SER")
- class KIESer(hub.Module):
- def _initialize(self, use_gpu=False, enable_mkldnn=False):
- """
- initialize with the necessary elements
- """
- cfg = self.merge_configs()
- cfg.use_gpu = use_gpu
- if use_gpu:
- try:
- _places = os.environ["CUDA_VISIBLE_DEVICES"]
- int(_places[0])
- print("use gpu: ", use_gpu)
- print("CUDA_VISIBLE_DEVICES: ", _places)
- cfg.gpu_mem = 8000
- except:
- raise RuntimeError(
- "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
- )
- cfg.ir_optim = True
- cfg.enable_mkldnn = enable_mkldnn
- self.ser_predictor = SerPredictor(cfg)
- def merge_configs(self, ):
- # deafult cfg
- backup_argv = copy.deepcopy(sys.argv)
- sys.argv = sys.argv[:1]
- cfg = parse_args()
- update_cfg_map = vars(read_params())
- for key in update_cfg_map:
- cfg.__setattr__(key, update_cfg_map[key])
- sys.argv = copy.deepcopy(backup_argv)
- return cfg
- def read_images(self, paths=[]):
- images = []
- for img_path in paths:
- assert os.path.isfile(
- img_path), "The {} isn't a valid file.".format(img_path)
- img = cv2.imread(img_path)
- if img is None:
- logger.info("error in loading image:{}".format(img_path))
- continue
- images.append(img)
- return images
- def predict(self, images=[], paths=[]):
- """
- Get the chinese texts in the predicted images.
- Args:
- images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
- paths (list[str]): The paths of images. If paths not images
- Returns:
- res (list): The result of chinese texts and save path of images.
- """
- if images != [] and isinstance(images, list) and paths == []:
- predicted_data = images
- elif images == [] and isinstance(paths, list) and paths != []:
- predicted_data = self.read_images(paths)
- else:
- raise TypeError("The input data is inconsistent with expectations.")
- assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
- all_results = []
- for img in predicted_data:
- if img is None:
- logger.info("error in loading image")
- all_results.append([])
- continue
- starttime = time.time()
- ser_res, _, elapse = self.ser_predictor(img)
- elapse = time.time() - starttime
- logger.info("Predict time: {}".format(elapse))
- all_results.append(ser_res)
- return all_results
- @serving
- def serving_method(self, images, **kwargs):
- """
- Run as a service.
- """
- images_decode = [base64_to_cv2(image) for image in images]
- results = self.predict(images_decode, **kwargs)
- return results
- if __name__ == '__main__':
- ocr = OCRSystem()
- ocr._initialize()
- image_path = [
- './doc/imgs/11.jpg',
- './doc/imgs/12.jpg',
- ]
- res = ocr.predict(paths=image_path)
- print(res)
|