123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import print_function
- import argparse
- import json
- import os
- import re
- import traceback
- def parse_args():
- parser = argparse.ArgumentParser(description=__doc__)
- parser.add_argument(
- "--filename", type=str, help="The name of log which need to analysis.")
- parser.add_argument(
- "--log_with_profiler",
- type=str,
- help="The path of train log with profiler")
- parser.add_argument(
- "--profiler_path", type=str, help="The path of profiler timeline log.")
- parser.add_argument(
- "--keyword", type=str, help="Keyword to specify analysis data")
- parser.add_argument(
- "--separator",
- type=str,
- default=None,
- help="Separator of different field in log")
- parser.add_argument(
- '--position', type=int, default=None, help='The position of data field')
- parser.add_argument(
- '--range',
- type=str,
- default="",
- help='The range of data field to intercept')
- parser.add_argument(
- '--base_batch_size', type=int, help='base_batch size on gpu')
- parser.add_argument(
- '--skip_steps',
- type=int,
- default=0,
- help='The number of steps to be skipped')
- parser.add_argument(
- '--model_mode',
- type=int,
- default=-1,
- help='Analysis mode, default value is -1')
- parser.add_argument('--ips_unit', type=str, default=None, help='IPS unit')
- parser.add_argument(
- '--model_name',
- type=str,
- default=0,
- help='training model_name, transformer_base')
- parser.add_argument(
- '--mission_name', type=str, default=0, help='training mission name')
- parser.add_argument(
- '--direction_id', type=int, default=0, help='training direction_id')
- parser.add_argument(
- '--run_mode',
- type=str,
- default="sp",
- help='multi process or single process')
- parser.add_argument(
- '--index',
- type=int,
- default=1,
- help='{1: speed, 2:mem, 3:profiler, 6:max_batch_size}')
- parser.add_argument(
- '--gpu_num', type=int, default=1, help='nums of training gpus')
- args = parser.parse_args()
- args.separator = None if args.separator == "None" else args.separator
- return args
- def _is_number(num):
- pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$')
- result = pattern.match(num)
- if result:
- return True
- else:
- return False
- class TimeAnalyzer(object):
- def __init__(self,
- filename,
- keyword=None,
- separator=None,
- position=None,
- range="-1"):
- if filename is None:
- raise Exception("Please specify the filename!")
- if keyword is None:
- raise Exception("Please specify the keyword!")
- self.filename = filename
- self.keyword = keyword
- self.separator = separator
- self.position = position
- self.range = range
- self.records = None
- self._distil()
- def _distil(self):
- self.records = []
- with open(self.filename, "r") as f_object:
- lines = f_object.readlines()
- for line in lines:
- if self.keyword not in line:
- continue
- try:
- result = None
- # Distil the string from a line.
- line = line.strip()
- line_words = line.split(
- self.separator) if self.separator else line.split()
- if args.position:
- result = line_words[self.position]
- else:
- # Distil the string following the keyword.
- for i in range(len(line_words) - 1):
- if line_words[i] == self.keyword:
- result = line_words[i + 1]
- break
- # Distil the result from the picked string.
- if not self.range:
- result = result[0:]
- elif _is_number(self.range):
- result = result[0:int(self.range)]
- else:
- result = result[int(self.range.split(":")[0]):int(
- self.range.split(":")[1])]
- self.records.append(float(result))
- except Exception as exc:
- print("line is: {}; separator={}; position={}".format(
- line, self.separator, self.position))
- print("Extract {} records: separator={}; position={}".format(
- len(self.records), self.separator, self.position))
- def _get_fps(self,
- mode,
- batch_size,
- gpu_num,
- avg_of_records,
- run_mode,
- unit=None):
- if mode == -1 and run_mode == 'sp':
- assert unit, "Please set the unit when mode is -1."
- fps = gpu_num * avg_of_records
- elif mode == -1 and run_mode == 'mp':
- assert unit, "Please set the unit when mode is -1."
- fps = gpu_num * avg_of_records #temporarily, not used now
- print("------------this is mp")
- elif mode == 0:
- # s/step -> samples/s
- fps = (batch_size * gpu_num) / avg_of_records
- unit = "samples/s"
- elif mode == 1:
- # steps/s -> steps/s
- fps = avg_of_records
- unit = "steps/s"
- elif mode == 2:
- # s/step -> steps/s
- fps = 1 / avg_of_records
- unit = "steps/s"
- elif mode == 3:
- # steps/s -> samples/s
- fps = batch_size * gpu_num * avg_of_records
- unit = "samples/s"
- elif mode == 4:
- # s/epoch -> s/epoch
- fps = avg_of_records
- unit = "s/epoch"
- else:
- ValueError("Unsupported analysis mode.")
- return fps, unit
- def analysis(self,
- batch_size,
- gpu_num=1,
- skip_steps=0,
- mode=-1,
- run_mode='sp',
- unit=None):
- if batch_size <= 0:
- print("base_batch_size should larger than 0.")
- return 0, ''
- if len(
- self.records
- ) <= skip_steps: # to address the condition which item of log equals to skip_steps
- print("no records")
- return 0, ''
- sum_of_records = 0
- sum_of_records_skipped = 0
- skip_min = self.records[skip_steps]
- skip_max = self.records[skip_steps]
- count = len(self.records)
- for i in range(count):
- sum_of_records += self.records[i]
- if i >= skip_steps:
- sum_of_records_skipped += self.records[i]
- if self.records[i] < skip_min:
- skip_min = self.records[i]
- if self.records[i] > skip_max:
- skip_max = self.records[i]
- avg_of_records = sum_of_records / float(count)
- avg_of_records_skipped = sum_of_records_skipped / float(count -
- skip_steps)
- fps, fps_unit = self._get_fps(mode, batch_size, gpu_num, avg_of_records,
- run_mode, unit)
- fps_skipped, _ = self._get_fps(mode, batch_size, gpu_num,
- avg_of_records_skipped, run_mode, unit)
- if mode == -1:
- print("average ips of %d steps, skip 0 step:" % count)
- print("\tAvg: %.3f %s" % (avg_of_records, fps_unit))
- print("\tFPS: %.3f %s" % (fps, fps_unit))
- if skip_steps > 0:
- print("average ips of %d steps, skip %d steps:" %
- (count, skip_steps))
- print("\tAvg: %.3f %s" % (avg_of_records_skipped, fps_unit))
- print("\tMin: %.3f %s" % (skip_min, fps_unit))
- print("\tMax: %.3f %s" % (skip_max, fps_unit))
- print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
- elif mode == 1 or mode == 3:
- print("average latency of %d steps, skip 0 step:" % count)
- print("\tAvg: %.3f steps/s" % avg_of_records)
- print("\tFPS: %.3f %s" % (fps, fps_unit))
- if skip_steps > 0:
- print("average latency of %d steps, skip %d steps:" %
- (count, skip_steps))
- print("\tAvg: %.3f steps/s" % avg_of_records_skipped)
- print("\tMin: %.3f steps/s" % skip_min)
- print("\tMax: %.3f steps/s" % skip_max)
- print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
- elif mode == 0 or mode == 2:
- print("average latency of %d steps, skip 0 step:" % count)
- print("\tAvg: %.3f s/step" % avg_of_records)
- print("\tFPS: %.3f %s" % (fps, fps_unit))
- if skip_steps > 0:
- print("average latency of %d steps, skip %d steps:" %
- (count, skip_steps))
- print("\tAvg: %.3f s/step" % avg_of_records_skipped)
- print("\tMin: %.3f s/step" % skip_min)
- print("\tMax: %.3f s/step" % skip_max)
- print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
- return round(fps_skipped, 3), fps_unit
- if __name__ == "__main__":
- args = parse_args()
- run_info = dict()
- run_info["log_file"] = args.filename
- run_info["model_name"] = args.model_name
- run_info["mission_name"] = args.mission_name
- run_info["direction_id"] = args.direction_id
- run_info["run_mode"] = args.run_mode
- run_info["index"] = args.index
- run_info["gpu_num"] = args.gpu_num
- run_info["FINAL_RESULT"] = 0
- run_info["JOB_FAIL_FLAG"] = 0
- try:
- if args.index == 1:
- if args.gpu_num == 1:
- run_info["log_with_profiler"] = args.log_with_profiler
- run_info["profiler_path"] = args.profiler_path
- analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator,
- args.position, args.range)
- run_info["FINAL_RESULT"], run_info["UNIT"] = analyzer.analysis(
- batch_size=args.base_batch_size,
- gpu_num=args.gpu_num,
- skip_steps=args.skip_steps,
- mode=args.model_mode,
- run_mode=args.run_mode,
- unit=args.ips_unit)
- try:
- if int(os.getenv('job_fail_flag')) == 1 or int(run_info[
- "FINAL_RESULT"]) == 0:
- run_info["JOB_FAIL_FLAG"] = 1
- except:
- pass
- elif args.index == 3:
- run_info["FINAL_RESULT"] = {}
- records_fo_total = TimeAnalyzer(args.filename, 'Framework overhead',
- None, 3, '').records
- records_fo_ratio = TimeAnalyzer(args.filename, 'Framework overhead',
- None, 5).records
- records_ct_total = TimeAnalyzer(args.filename, 'Computation time',
- None, 3, '').records
- records_gm_total = TimeAnalyzer(args.filename,
- 'GpuMemcpy Calls',
- None, 4, '').records
- records_gm_ratio = TimeAnalyzer(args.filename,
- 'GpuMemcpy Calls',
- None, 6).records
- records_gmas_total = TimeAnalyzer(args.filename,
- 'GpuMemcpyAsync Calls',
- None, 4, '').records
- records_gms_total = TimeAnalyzer(args.filename,
- 'GpuMemcpySync Calls',
- None, 4, '').records
- run_info["FINAL_RESULT"]["Framework_Total"] = records_fo_total[
- 0] if records_fo_total else 0
- run_info["FINAL_RESULT"]["Framework_Ratio"] = records_fo_ratio[
- 0] if records_fo_ratio else 0
- run_info["FINAL_RESULT"][
- "ComputationTime_Total"] = records_ct_total[
- 0] if records_ct_total else 0
- run_info["FINAL_RESULT"]["GpuMemcpy_Total"] = records_gm_total[
- 0] if records_gm_total else 0
- run_info["FINAL_RESULT"]["GpuMemcpy_Ratio"] = records_gm_ratio[
- 0] if records_gm_ratio else 0
- run_info["FINAL_RESULT"][
- "GpuMemcpyAsync_Total"] = records_gmas_total[
- 0] if records_gmas_total else 0
- run_info["FINAL_RESULT"]["GpuMemcpySync_Total"] = records_gms_total[
- 0] if records_gms_total else 0
- else:
- print("Not support!")
- except Exception:
- traceback.print_exc()
- print("{}".format(json.dumps(run_info))
- ) # it's required, for the log file path insert to the database
|