1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import random
- import cv2
- class DatasetSampler(object):
- def __init__(self, config):
- self.image_home = config["StyleSampler"]["image_home"]
- label_file = config["StyleSampler"]["label_file"]
- self.dataset_with_label = config["StyleSampler"]["with_label"]
- self.height = config["Global"]["image_height"]
- self.index = 0
- with open(label_file, "r") as f:
- label_raw = f.read()
- self.path_label_list = label_raw.split("\n")[:-1]
- assert len(self.path_label_list) > 0
- random.shuffle(self.path_label_list)
- def sample(self):
- if self.index >= len(self.path_label_list):
- random.shuffle(self.path_label_list)
- self.index = 0
- if self.dataset_with_label:
- path_label = self.path_label_list[self.index]
- rel_image_path, label = path_label.split('\t')
- else:
- rel_image_path = self.path_label_list[self.index]
- label = None
- img_path = "{}/{}".format(self.image_home, rel_image_path)
- image = cv2.imread(img_path)
- origin_height = image.shape[0]
- ratio = self.height / origin_height
- width = int(image.shape[1] * ratio)
- height = int(image.shape[0] * ratio)
- image = cv2.resize(image, (width, height))
- self.index += 1
- if label:
- return {"image": image, "label": label}
- else:
- return {"image": image}
- def duplicate_image(image, width):
- image_width = image.shape[1]
- dup_num = width // image_width + 1
- image = np.tile(image, reps=[1, dup_num, 1])
- cropped_image = image[:, :width, :]
- return cropped_image
|