123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import cv2
- import math
- import paddle
- from arch import style_text_rec
- from utils.sys_funcs import check_gpu
- from utils.logging import get_logger
- class StyleTextRecPredictor(object):
- def __init__(self, config):
- algorithm = config['Predictor']['algorithm']
- assert algorithm in ["StyleTextRec"
- ], "Generator {} not supported.".format(algorithm)
- use_gpu = config["Global"]['use_gpu']
- check_gpu(use_gpu)
- paddle.set_device('gpu' if use_gpu else 'cpu')
- self.logger = get_logger()
- self.generator = getattr(style_text_rec, algorithm)(config)
- self.height = config["Global"]["image_height"]
- self.width = config["Global"]["image_width"]
- self.scale = config["Predictor"]["scale"]
- self.mean = config["Predictor"]["mean"]
- self.std = config["Predictor"]["std"]
- self.expand_result = config["Predictor"]["expand_result"]
- def reshape_to_same_height(self, img_list):
- h = img_list[0].shape[0]
- for idx in range(1, len(img_list)):
- new_w = round(1.0 * img_list[idx].shape[1] /
- img_list[idx].shape[0] * h)
- img_list[idx] = cv2.resize(img_list[idx], (new_w, h))
- return img_list
- def predict_single_image(self, style_input, text_input):
- style_input = self.rep_style_input(style_input, text_input)
- tensor_style_input = self.preprocess(style_input)
- tensor_text_input = self.preprocess(text_input)
- style_text_result = self.generator.forward(tensor_style_input,
- tensor_text_input)
- fake_fusion = self.postprocess(style_text_result["fake_fusion"])
- fake_text = self.postprocess(style_text_result["fake_text"])
- fake_sk = self.postprocess(style_text_result["fake_sk"])
- fake_bg = self.postprocess(style_text_result["fake_bg"])
- bbox = self.get_text_boundary(fake_text)
- if bbox:
- left, right, top, bottom = bbox
- fake_fusion = fake_fusion[top:bottom, left:right, :]
- fake_text = fake_text[top:bottom, left:right, :]
- fake_sk = fake_sk[top:bottom, left:right, :]
- fake_bg = fake_bg[top:bottom, left:right, :]
- # fake_fusion = self.crop_by_text(img_fake_fusion, img_fake_text)
- return {
- "fake_fusion": fake_fusion,
- "fake_text": fake_text,
- "fake_sk": fake_sk,
- "fake_bg": fake_bg,
- }
- def predict(self, style_input, text_input_list):
- if not isinstance(text_input_list, (tuple, list)):
- return self.predict_single_image(style_input, text_input_list)
- synth_result_list = []
- for text_input in text_input_list:
- synth_result = self.predict_single_image(style_input, text_input)
- synth_result_list.append(synth_result)
- for key in synth_result:
- res = [r[key] for r in synth_result_list]
- res = self.reshape_to_same_height(res)
- synth_result[key] = np.concatenate(res, axis=1)
- return synth_result
- def preprocess(self, img):
- img = (img.astype('float32') * self.scale - self.mean) / self.std
- img_height, img_width, channel = img.shape
- assert channel == 3, "Please use an rgb image."
- ratio = img_width / float(img_height)
- if math.ceil(self.height * ratio) > self.width:
- resized_w = self.width
- else:
- resized_w = int(math.ceil(self.height * ratio))
- img = cv2.resize(img, (resized_w, self.height))
- new_img = np.zeros([self.height, self.width, 3]).astype('float32')
- new_img[:, 0:resized_w, :] = img
- img = new_img.transpose((2, 0, 1))
- img = img[np.newaxis, :, :, :]
- return paddle.to_tensor(img)
- def postprocess(self, tensor):
- img = tensor.numpy()[0]
- img = img.transpose((1, 2, 0))
- img = (img * self.std + self.mean) / self.scale
- img = np.maximum(img, 0.0)
- img = np.minimum(img, 255.0)
- img = img.astype('uint8')
- return img
- def rep_style_input(self, style_input, text_input):
- rep_num = int(1.2 * (text_input.shape[1] / text_input.shape[0]) /
- (style_input.shape[1] / style_input.shape[0])) + 1
- style_input = np.tile(style_input, reps=[1, rep_num, 1])
- max_width = int(self.width / self.height * style_input.shape[0])
- style_input = style_input[:, :max_width, :]
- return style_input
- def get_text_boundary(self, text_img):
- img_height = text_img.shape[0]
- img_width = text_img.shape[1]
- bounder = 3
- text_canny_img = cv2.Canny(text_img, 10, 20)
- edge_num_h = text_canny_img.sum(axis=0)
- no_zero_list_h = np.where(edge_num_h > 0)[0]
- edge_num_w = text_canny_img.sum(axis=1)
- no_zero_list_w = np.where(edge_num_w > 0)[0]
- if len(no_zero_list_h) == 0 or len(no_zero_list_w) == 0:
- return None
- left = max(no_zero_list_h[0] - bounder, 0)
- right = min(no_zero_list_h[-1] + bounder, img_width)
- top = max(no_zero_list_w[0] - bounder, 0)
- bottom = min(no_zero_list_w[-1] + bounder, img_height)
- return [left, right, top, bottom]
|