123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- from arch.base_module import SNConv, SNConvTranspose, ResBlock
- class Encoder(nn.Layer):
- def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer,
- act, act_attr, conv_block_dropout, conv_block_num,
- conv_block_dilation):
- super(Encoder, self).__init__()
- self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate")
- self._in_conv = SNConv(
- name=name + "_in_conv",
- in_channels=in_channels,
- out_channels=encode_dim,
- kernel_size=7,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._down1 = SNConv(
- name=name + "_down1",
- in_channels=encode_dim,
- out_channels=encode_dim * 2,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._down2 = SNConv(
- name=name + "_down2",
- in_channels=encode_dim * 2,
- out_channels=encode_dim * 4,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._down3 = SNConv(
- name=name + "_down3",
- in_channels=encode_dim * 4,
- out_channels=encode_dim * 4,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- conv_blocks = []
- for i in range(conv_block_num):
- conv_blocks.append(
- ResBlock(
- name="{}_conv_block_{}".format(name, i),
- channels=encode_dim * 4,
- norm_layer=norm_layer,
- use_dropout=conv_block_dropout,
- use_dilation=conv_block_dilation,
- use_bias=use_bias))
- self._conv_blocks = nn.Sequential(*conv_blocks)
- def forward(self, x):
- out_dict = dict()
- x = self._pad2d(x)
- out_dict["in_conv"] = self._in_conv.forward(x)
- out_dict["down1"] = self._down1.forward(out_dict["in_conv"])
- out_dict["down2"] = self._down2.forward(out_dict["down1"])
- out_dict["down3"] = self._down3.forward(out_dict["down2"])
- out_dict["res_blocks"] = self._conv_blocks.forward(out_dict["down3"])
- return out_dict
- class EncoderUnet(nn.Layer):
- def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer,
- act, act_attr):
- super(EncoderUnet, self).__init__()
- self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate")
- self._in_conv = SNConv(
- name=name + "_in_conv",
- in_channels=in_channels,
- out_channels=encode_dim,
- kernel_size=7,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._down1 = SNConv(
- name=name + "_down1",
- in_channels=encode_dim,
- out_channels=encode_dim * 2,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._down2 = SNConv(
- name=name + "_down2",
- in_channels=encode_dim * 2,
- out_channels=encode_dim * 2,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._down3 = SNConv(
- name=name + "_down3",
- in_channels=encode_dim * 2,
- out_channels=encode_dim * 2,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._down4 = SNConv(
- name=name + "_down4",
- in_channels=encode_dim * 2,
- out_channels=encode_dim * 2,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._up1 = SNConvTranspose(
- name=name + "_up1",
- in_channels=encode_dim * 2,
- out_channels=encode_dim * 2,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- self._up2 = SNConvTranspose(
- name=name + "_up2",
- in_channels=encode_dim * 4,
- out_channels=encode_dim * 4,
- kernel_size=3,
- stride=2,
- padding=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act=act,
- act_attr=act_attr)
- def forward(self, x):
- output_dict = dict()
- x = self._pad2d(x)
- output_dict['in_conv'] = self._in_conv.forward(x)
- output_dict['down1'] = self._down1.forward(output_dict['in_conv'])
- output_dict['down2'] = self._down2.forward(output_dict['down1'])
- output_dict['down3'] = self._down3.forward(output_dict['down2'])
- output_dict['down4'] = self._down4.forward(output_dict['down3'])
- output_dict['up1'] = self._up1.forward(output_dict['down4'])
- output_dict['up2'] = self._up2.forward(
- paddle.concat(
- (output_dict['down3'], output_dict['up1']), axis=1))
- output_dict['concat'] = paddle.concat(
- (output_dict['down2'], output_dict['up2']), axis=1)
- return output_dict
|