| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 | # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##    http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""This code is refer from:https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py"""import paddleimport paddle.nn as nnimport sysimport mathdef conv3x3(in_planes, out_planes, stride=1):    """3x3 convolution with padding"""    return nn.Conv2D(        in_planes,        out_planes,        kernel_size=3,        stride=stride,        padding=1,        bias_attr=False)def conv1x1(in_planes, out_planes, stride=1):    """1x1 convolution"""    return nn.Conv2D(        in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):    # [n_position]    positions = paddle.arange(0, n_position)    # [feat_dim]    dim_range = paddle.arange(0, feat_dim)    dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)    # [n_position, feat_dim]    angles = paddle.unsqueeze(        positions, axis=1) / paddle.unsqueeze(            dim_range, axis=0)    angles = paddle.cast(angles, "float32")    angles[:, 0::2] = paddle.sin(angles[:, 0::2])    angles[:, 1::2] = paddle.cos(angles[:, 1::2])    return anglesclass AsterBlock(nn.Layer):    def __init__(self, inplanes, planes, stride=1, downsample=None):        super(AsterBlock, self).__init__()        self.conv1 = conv1x1(inplanes, planes, stride)        self.bn1 = nn.BatchNorm2D(planes)        self.relu = nn.ReLU()        self.conv2 = conv3x3(planes, planes)        self.bn2 = nn.BatchNorm2D(planes)        self.downsample = downsample        self.stride = stride    def forward(self, x):        residual = x        out = self.conv1(x)        out = self.bn1(out)        out = self.relu(out)        out = self.conv2(out)        out = self.bn2(out)        if self.downsample is not None:            residual = self.downsample(x)        out += residual        out = self.relu(out)        return outclass ResNet_ASTER(nn.Layer):    """For aster or crnn"""    def __init__(self, with_lstm=True, n_group=1, in_channels=3):        super(ResNet_ASTER, self).__init__()        self.with_lstm = with_lstm        self.n_group = n_group        self.layer0 = nn.Sequential(            nn.Conv2D(                in_channels,                32,                kernel_size=(3, 3),                stride=1,                padding=1,                bias_attr=False),            nn.BatchNorm2D(32),            nn.ReLU())        self.inplanes = 32        self.layer1 = self._make_layer(32, 3, [2, 2])  # [16, 50]        self.layer2 = self._make_layer(64, 4, [2, 2])  # [8, 25]        self.layer3 = self._make_layer(128, 6, [2, 1])  # [4, 25]        self.layer4 = self._make_layer(256, 6, [2, 1])  # [2, 25]        self.layer5 = self._make_layer(512, 3, [2, 1])  # [1, 25]        if with_lstm:            self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)            self.out_channels = 2 * 256        else:            self.out_channels = 512    def _make_layer(self, planes, blocks, stride):        downsample = None        if stride != [1, 1] or self.inplanes != planes:            downsample = nn.Sequential(                conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))        layers = []        layers.append(AsterBlock(self.inplanes, planes, stride, downsample))        self.inplanes = planes        for _ in range(1, blocks):            layers.append(AsterBlock(self.inplanes, planes))        return nn.Sequential(*layers)    def forward(self, x):        x0 = self.layer0(x)        x1 = self.layer1(x0)        x2 = self.layer2(x1)        x3 = self.layer3(x2)        x4 = self.layer4(x3)        x5 = self.layer5(x4)        cnn_feat = x5.squeeze(2)  # [N, c, w]        cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])        if self.with_lstm:            rnn_feat, _ = self.rnn(cnn_feat)            return rnn_feat        else:            return cnn_feat
 |