1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- __all__ = ['KIEMetric']
- class VQASerTokenMetric(object):
- def __init__(self, main_indicator='hmean', **kwargs):
- self.main_indicator = main_indicator
- self.reset()
- def __call__(self, preds, batch, **kwargs):
- preds, labels = preds
- self.pred_list.extend(preds)
- self.gt_list.extend(labels)
- def get_metric(self):
- from seqeval.metrics import f1_score, precision_score, recall_score
- metrics = {
- "precision": precision_score(self.gt_list, self.pred_list),
- "recall": recall_score(self.gt_list, self.pred_list),
- "hmean": f1_score(self.gt_list, self.pred_list),
- }
- self.reset()
- return metrics
- def reset(self):
- self.pred_list = []
- self.gt_list = []
|