| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 | 
							- import paddle
 
- from paddle import nn
 
- import paddle.nn.functional as F
 
- class CELoss(nn.Layer):
 
-     def __init__(self,
 
-                  smoothing=False,
 
-                  with_all=False,
 
-                  ignore_index=-1,
 
-                  **kwargs):
 
-         super(CELoss, self).__init__()
 
-         if ignore_index >= 0:
 
-             self.loss_func = nn.CrossEntropyLoss(
 
-                 reduction='mean', ignore_index=ignore_index)
 
-         else:
 
-             self.loss_func = nn.CrossEntropyLoss(reduction='mean')
 
-         self.smoothing = smoothing
 
-         self.with_all = with_all
 
-     def forward(self, pred, batch):
 
-         if isinstance(pred, dict):  # for ABINet
 
-             loss = {}
 
-             loss_sum = []
 
-             for name, logits in pred.items():
 
-                 if isinstance(logits, list):
 
-                     logit_num = len(logits)
 
-                     all_tgt = paddle.concat([batch[1]] * logit_num, 0)
 
-                     all_logits = paddle.concat(logits, 0)
 
-                     flt_logtis = all_logits.reshape([-1, all_logits.shape[2]])
 
-                     flt_tgt = all_tgt.reshape([-1])
 
-                 else:
 
-                     flt_logtis = logits.reshape([-1, logits.shape[2]])
 
-                     flt_tgt = batch[1].reshape([-1])
 
-                 loss[name + '_loss'] = self.loss_func(flt_logtis, flt_tgt)
 
-                 loss_sum.append(loss[name + '_loss'])
 
-             loss['loss'] = sum(loss_sum)
 
-             return loss
 
-         else:
 
-             if self.with_all:  # for ViTSTR
 
-                 tgt = batch[1]
 
-                 pred = pred.reshape([-1, pred.shape[2]])
 
-                 tgt = tgt.reshape([-1])
 
-                 loss = self.loss_func(pred, tgt)
 
-                 return {'loss': loss}
 
-             else:  # for NRTR
 
-                 max_len = batch[2].max()
 
-                 tgt = batch[1][:, 1:2 + max_len]
 
-                 pred = pred.reshape([-1, pred.shape[2]])
 
-                 tgt = tgt.reshape([-1])
 
-                 if self.smoothing:
 
-                     eps = 0.1
 
-                     n_class = pred.shape[1]
 
-                     one_hot = F.one_hot(tgt, pred.shape[1])
 
-                     one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (
 
-                         n_class - 1)
 
-                     log_prb = F.log_softmax(pred, axis=1)
 
-                     non_pad_mask = paddle.not_equal(
 
-                         tgt, paddle.zeros(
 
-                             tgt.shape, dtype=tgt.dtype))
 
-                     loss = -(one_hot * log_prb).sum(axis=1)
 
-                     loss = loss.masked_select(non_pad_mask).mean()
 
-                 else:
 
-                     loss = self.loss_func(pred, tgt)
 
-                 return {'loss': loss}
 
 
  |