123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # reference from : https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/kie/losses/sdmgr_loss.py
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import nn
- import paddle
- class SDMGRLoss(nn.Layer):
- def __init__(self, node_weight=1.0, edge_weight=1.0, ignore=0):
- super().__init__()
- self.loss_node = nn.CrossEntropyLoss(ignore_index=ignore)
- self.loss_edge = nn.CrossEntropyLoss(ignore_index=-1)
- self.node_weight = node_weight
- self.edge_weight = edge_weight
- self.ignore = ignore
- def pre_process(self, gts, tag):
- gts, tag = gts.numpy(), tag.numpy().tolist()
- temp_gts = []
- batch = len(tag)
- for i in range(batch):
- num, recoder_len = tag[i][0], tag[i][1]
- temp_gts.append(
- paddle.to_tensor(
- gts[i, :num, :num + 1], dtype='int64'))
- return temp_gts
- def accuracy(self, pred, target, topk=1, thresh=None):
- """Calculate accuracy according to the prediction and target.
- Args:
- pred (torch.Tensor): The model prediction, shape (N, num_class)
- target (torch.Tensor): The target of each prediction, shape (N, )
- topk (int | tuple[int], optional): If the predictions in ``topk``
- matches the target, the predictions will be regarded as
- correct ones. Defaults to 1.
- thresh (float, optional): If not None, predictions with scores under
- this threshold are considered incorrect. Default to None.
- Returns:
- float | tuple[float]: If the input ``topk`` is a single integer,
- the function will return a single float as accuracy. If
- ``topk`` is a tuple containing multiple integers, the
- function will return a tuple containing accuracies of
- each ``topk`` number.
- """
- assert isinstance(topk, (int, tuple))
- if isinstance(topk, int):
- topk = (topk, )
- return_single = True
- else:
- return_single = False
- maxk = max(topk)
- if pred.shape[0] == 0:
- accu = [pred.new_tensor(0.) for i in range(len(topk))]
- return accu[0] if return_single else accu
- pred_value, pred_label = paddle.topk(pred, maxk, axis=1)
- pred_label = pred_label.transpose(
- [1, 0]) # transpose to shape (maxk, N)
- correct = paddle.equal(pred_label,
- (target.reshape([1, -1]).expand_as(pred_label)))
- res = []
- for k in topk:
- correct_k = paddle.sum(correct[:k].reshape([-1]).astype('float32'),
- axis=0,
- keepdim=True)
- res.append(
- paddle.multiply(correct_k,
- paddle.to_tensor(100.0 / pred.shape[0])))
- return res[0] if return_single else res
- def forward(self, pred, batch):
- node_preds, edge_preds = pred
- gts, tag = batch[4], batch[5]
- gts = self.pre_process(gts, tag)
- node_gts, edge_gts = [], []
- for gt in gts:
- node_gts.append(gt[:, 0])
- edge_gts.append(gt[:, 1:].reshape([-1]))
- node_gts = paddle.concat(node_gts)
- edge_gts = paddle.concat(edge_gts)
- node_valids = paddle.nonzero(node_gts != self.ignore).reshape([-1])
- edge_valids = paddle.nonzero(edge_gts != -1).reshape([-1])
- loss_node = self.loss_node(node_preds, node_gts)
- loss_edge = self.loss_edge(edge_preds, edge_gts)
- loss = self.node_weight * loss_node + self.edge_weight * loss_edge
- return dict(
- loss=loss,
- loss_node=loss_node,
- loss_edge=loss_edge,
- acc_node=self.accuracy(
- paddle.gather(node_preds, node_valids),
- paddle.gather(node_gts, node_valids)),
- acc_edge=self.accuracy(
- paddle.gather(edge_preds, edge_valids),
- paddle.gather(edge_gts, edge_valids)))
|