123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <chrono>
- #include "paddle_api.h" // NOLINT
- #include "paddle_place.h"
- #include "cls_process.h"
- #include "crnn_process.h"
- #include "db_post_process.h"
- #include "AutoLog/auto_log/lite_autolog.h"
- using namespace paddle::lite_api; // NOLINT
- using namespace std;
- // fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
- void NeonMeanScale(const float *din, float *dout, int size,
- const std::vector<float> mean,
- const std::vector<float> scale) {
- if (mean.size() != 3 || scale.size() != 3) {
- std::cerr << "[ERROR] mean or scale size must equal to 3" << std::endl;
- exit(1);
- }
- float32x4_t vmean0 = vdupq_n_f32(mean[0]);
- float32x4_t vmean1 = vdupq_n_f32(mean[1]);
- float32x4_t vmean2 = vdupq_n_f32(mean[2]);
- float32x4_t vscale0 = vdupq_n_f32(scale[0]);
- float32x4_t vscale1 = vdupq_n_f32(scale[1]);
- float32x4_t vscale2 = vdupq_n_f32(scale[2]);
- float *dout_c0 = dout;
- float *dout_c1 = dout + size;
- float *dout_c2 = dout + size * 2;
- int i = 0;
- for (; i < size - 3; i += 4) {
- float32x4x3_t vin3 = vld3q_f32(din);
- float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
- float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
- float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
- float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
- float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
- float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
- vst1q_f32(dout_c0, vs0);
- vst1q_f32(dout_c1, vs1);
- vst1q_f32(dout_c2, vs2);
- din += 12;
- dout_c0 += 4;
- dout_c1 += 4;
- dout_c2 += 4;
- }
- for (; i < size; i++) {
- *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
- *(dout_c1++) = (*(din++) - mean[1]) * scale[1];
- *(dout_c2++) = (*(din++) - mean[2]) * scale[2];
- }
- }
- // resize image to a size multiple of 32 which is required by the network
- cv::Mat DetResizeImg(const cv::Mat img, int max_size_len,
- std::vector<float> &ratio_hw) {
- int w = img.cols;
- int h = img.rows;
- float ratio = 1.f;
- int max_wh = w >= h ? w : h;
- if (max_wh > max_size_len) {
- if (h > w) {
- ratio = static_cast<float>(max_size_len) / static_cast<float>(h);
- } else {
- ratio = static_cast<float>(max_size_len) / static_cast<float>(w);
- }
- }
- int resize_h = static_cast<int>(float(h) * ratio);
- int resize_w = static_cast<int>(float(w) * ratio);
- if (resize_h % 32 == 0)
- resize_h = resize_h;
- else if (resize_h / 32 < 1 + 1e-5)
- resize_h = 32;
- else
- resize_h = (resize_h / 32 - 1) * 32;
- if (resize_w % 32 == 0)
- resize_w = resize_w;
- else if (resize_w / 32 < 1 + 1e-5)
- resize_w = 32;
- else
- resize_w = (resize_w / 32 - 1) * 32;
- cv::Mat resize_img;
- cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
- ratio_hw.push_back(static_cast<float>(resize_h) / static_cast<float>(h));
- ratio_hw.push_back(static_cast<float>(resize_w) / static_cast<float>(w));
- return resize_img;
- }
- cv::Mat RunClsModel(cv::Mat img, std::shared_ptr<PaddlePredictor> predictor_cls,
- const float thresh = 0.9) {
- std::vector<float> mean = {0.5f, 0.5f, 0.5f};
- std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
- cv::Mat srcimg;
- img.copyTo(srcimg);
- cv::Mat crop_img;
- img.copyTo(crop_img);
- cv::Mat resize_img;
- int index = 0;
- float wh_ratio =
- static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);
- resize_img = ClsResizeImg(crop_img);
- resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
- const float *dimg = reinterpret_cast<const float *>(resize_img.data);
- std::unique_ptr<Tensor> input_tensor0(std::move(predictor_cls->GetInput(0)));
- input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
- auto *data0 = input_tensor0->mutable_data<float>();
- NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
- // Run CLS predictor
- predictor_cls->Run();
- // Get output and run postprocess
- std::unique_ptr<const Tensor> softmax_out(
- std::move(predictor_cls->GetOutput(0)));
- auto *softmax_scores = softmax_out->mutable_data<float>();
- auto softmax_out_shape = softmax_out->shape();
- float score = 0;
- int label = 0;
- for (int i = 0; i < softmax_out_shape[1]; i++) {
- if (softmax_scores[i] > score) {
- score = softmax_scores[i];
- label = i;
- }
- }
- if (label % 2 == 1 && score > thresh) {
- cv::rotate(srcimg, srcimg, 1);
- }
- return srcimg;
- }
- void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
- std::shared_ptr<PaddlePredictor> predictor_crnn,
- std::vector<std::string> &rec_text,
- std::vector<float> &rec_text_score,
- std::vector<std::string> charactor_dict,
- std::shared_ptr<PaddlePredictor> predictor_cls,
- int use_direction_classify,
- std::vector<double> *times,
- int rec_image_height) {
- std::vector<float> mean = {0.5f, 0.5f, 0.5f};
- std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
- cv::Mat srcimg;
- img.copyTo(srcimg);
- cv::Mat crop_img;
- cv::Mat resize_img;
- int index = 0;
- std::vector<double> time_info = {0, 0, 0};
- for (int i = boxes.size() - 1; i >= 0; i--) {
- auto preprocess_start = std::chrono::steady_clock::now();
- crop_img = GetRotateCropImage(srcimg, boxes[i]);
- if (use_direction_classify >= 1) {
- crop_img = RunClsModel(crop_img, predictor_cls);
- }
- float wh_ratio =
- static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);
- resize_img = CrnnResizeImg(crop_img, wh_ratio, rec_image_height);
- resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
- const float *dimg = reinterpret_cast<const float *>(resize_img.data);
- std::unique_ptr<Tensor> input_tensor0(
- std::move(predictor_crnn->GetInput(0)));
- input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
- auto *data0 = input_tensor0->mutable_data<float>();
- NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
- auto preprocess_end = std::chrono::steady_clock::now();
- //// Run CRNN predictor
- auto inference_start = std::chrono::steady_clock::now();
- predictor_crnn->Run();
- // Get output and run postprocess
- std::unique_ptr<const Tensor> output_tensor0(
- std::move(predictor_crnn->GetOutput(0)));
- auto *predict_batch = output_tensor0->data<float>();
- auto predict_shape = output_tensor0->shape();
- auto inference_end = std::chrono::steady_clock::now();
- // ctc decode
- auto postprocess_start = std::chrono::steady_clock::now();
- std::string str_res;
- int argmax_idx;
- int last_index = 0;
- float score = 0.f;
- int count = 0;
- float max_value = 0.0f;
- for (int n = 0; n < predict_shape[1]; n++) {
- argmax_idx = int(Argmax(&predict_batch[n * predict_shape[2]],
- &predict_batch[(n + 1) * predict_shape[2]]));
- max_value =
- float(*std::max_element(&predict_batch[n * predict_shape[2]],
- &predict_batch[(n + 1) * predict_shape[2]]));
- if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
- score += max_value;
- count += 1;
- str_res += charactor_dict[argmax_idx];
- }
- last_index = argmax_idx;
- }
- score /= count;
- rec_text.push_back(str_res);
- rec_text_score.push_back(score);
- auto postprocess_end = std::chrono::steady_clock::now();
- std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
- time_info[0] += double(preprocess_diff.count() * 1000);
- std::chrono::duration<float> inference_diff = inference_end - inference_start;
- time_info[1] += double(inference_diff.count() * 1000);
- std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
- time_info[2] += double(postprocess_diff.count() * 1000);
- }
- times->push_back(time_info[0]);
- times->push_back(time_info[1]);
- times->push_back(time_info[2]);
- }
- std::vector<std::vector<std::vector<int>>>
- RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
- std::map<std::string, double> Config, std::vector<double> *times) {
- // Read img
- int max_side_len = int(Config["max_side_len"]);
- int det_db_use_dilate = int(Config["det_db_use_dilate"]);
- cv::Mat srcimg;
- img.copyTo(srcimg);
-
- auto preprocess_start = std::chrono::steady_clock::now();
- std::vector<float> ratio_hw;
- img = DetResizeImg(img, max_side_len, ratio_hw);
- cv::Mat img_fp;
- img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);
- // Prepare input data from image
- std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
- input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
- auto *data0 = input_tensor0->mutable_data<float>();
- std::vector<float> mean = {0.485f, 0.456f, 0.406f};
- std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
- const float *dimg = reinterpret_cast<const float *>(img_fp.data);
- NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);
- auto preprocess_end = std::chrono::steady_clock::now();
- // Run predictor
- auto inference_start = std::chrono::steady_clock::now();
- predictor->Run();
- // Get output and post process
- std::unique_ptr<const Tensor> output_tensor(
- std::move(predictor->GetOutput(0)));
- auto *outptr = output_tensor->data<float>();
- auto shape_out = output_tensor->shape();
- auto inference_end = std::chrono::steady_clock::now();
- // Save output
- auto postprocess_start = std::chrono::steady_clock::now();
- float pred[shape_out[2] * shape_out[3]];
- unsigned char cbuf[shape_out[2] * shape_out[3]];
- for (int i = 0; i < int(shape_out[2] * shape_out[3]); i++) {
- pred[i] = static_cast<float>(outptr[i]);
- cbuf[i] = static_cast<unsigned char>((outptr[i]) * 255);
- }
- cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1,
- reinterpret_cast<unsigned char *>(cbuf));
- cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F,
- reinterpret_cast<float *>(pred));
- const double threshold = double(Config["det_db_thresh"]) * 255;
- const double max_value = 255;
- cv::Mat bit_map;
- cv::threshold(cbuf_map, bit_map, threshold, max_value, cv::THRESH_BINARY);
- if (det_db_use_dilate == 1) {
- cv::Mat dilation_map;
- cv::Mat dila_ele =
- cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
- cv::dilate(bit_map, dilation_map, dila_ele);
- bit_map = dilation_map;
- }
- auto boxes = BoxesFromBitmap(pred_map, bit_map, Config);
- std::vector<std::vector<std::vector<int>>> filter_boxes =
- FilterTagDetRes(boxes, ratio_hw[0], ratio_hw[1], srcimg);
- auto postprocess_end = std::chrono::steady_clock::now();
- std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
- times->push_back(double(preprocess_diff.count() * 1000));
- std::chrono::duration<float> inference_diff = inference_end - inference_start;
- times->push_back(double(inference_diff.count() * 1000));
- std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
- times->push_back(double(postprocess_diff.count() * 1000));
- return filter_boxes;
- }
- std::shared_ptr<PaddlePredictor> loadModel(std::string model_file, int num_threads) {
- MobileConfig config;
- config.set_model_from_file(model_file);
- config.set_threads(num_threads);
- std::shared_ptr<PaddlePredictor> predictor =
- CreatePaddlePredictor<MobileConfig>(config);
- return predictor;
- }
- cv::Mat Visualization(cv::Mat srcimg,
- std::vector<std::vector<std::vector<int>>> boxes) {
- cv::Point rook_points[boxes.size()][4];
- for (int n = 0; n < boxes.size(); n++) {
- for (int m = 0; m < boxes[0].size(); m++) {
- rook_points[n][m] = cv::Point(static_cast<int>(boxes[n][m][0]),
- static_cast<int>(boxes[n][m][1]));
- }
- }
- cv::Mat img_vis;
- srcimg.copyTo(img_vis);
- for (int n = 0; n < boxes.size(); n++) {
- const cv::Point *ppt[1] = {rook_points[n]};
- int npt[] = {4};
- cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
- }
- cv::imwrite("./vis.jpg", img_vis);
- std::cout << "The detection visualized image saved in ./vis.jpg" << std::endl;
- return img_vis;
- }
- std::vector<std::string> split(const std::string &str,
- const std::string &delim) {
- std::vector<std::string> res;
- if ("" == str)
- return res;
- char *strs = new char[str.length() + 1];
- std::strcpy(strs, str.c_str());
- char *d = new char[delim.length() + 1];
- std::strcpy(d, delim.c_str());
- char *p = std::strtok(strs, d);
- while (p) {
- string s = p;
- res.push_back(s);
- p = std::strtok(NULL, d);
- }
- return res;
- }
- std::map<std::string, double> LoadConfigTxt(std::string config_path) {
- auto config = ReadDict(config_path);
- std::map<std::string, double> dict;
- for (int i = 0; i < config.size(); i++) {
- std::vector<std::string> res = split(config[i], " ");
- dict[res[0]] = stod(res[1]);
- }
- return dict;
- }
- void check_params(int argc, char **argv) {
- if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
- std::cerr << "Please choose one mode of [det, rec, system] !" << std::endl;
- exit(1);
- }
- if (strcmp(argv[1], "det") == 0) {
- if (argc < 9){
- std::cerr << "[ERROR] usage:" << argv[0]
- << " det det_model runtime_device num_threads batchsize img_dir det_config lite_benchmark_value" << std::endl;
- exit(1);
- }
- }
- if (strcmp(argv[1], "rec") == 0) {
- if (argc < 9){
- std::cerr << "[ERROR] usage:" << argv[0]
- << " rec rec_model runtime_device num_threads batchsize img_dir key_txt lite_benchmark_value" << std::endl;
- exit(1);
- }
- }
- if (strcmp(argv[1], "system") == 0) {
- if (argc < 12){
- std::cerr << "[ERROR] usage:" << argv[0]
- << " system det_model rec_model clas_model runtime_device num_threads batchsize img_dir det_config key_txt lite_benchmark_value" << std::endl;
- exit(1);
- }
- }
- }
- void system(char **argv){
- std::string det_model_file = argv[2];
- std::string rec_model_file = argv[3];
- std::string cls_model_file = argv[4];
- std::string runtime_device = argv[5];
- std::string precision = argv[6];
- std::string num_threads = argv[7];
- std::string batchsize = argv[8];
- std::string img_dir = argv[9];
- std::string det_config_path = argv[10];
- std::string dict_path = argv[11];
- if (strcmp(argv[6], "FP32") != 0 && strcmp(argv[6], "INT8") != 0) {
- std::cerr << "Only support FP32 or INT8." << std::endl;
- exit(1);
- }
- std::vector<cv::String> cv_all_img_names;
- cv::glob(img_dir, cv_all_img_names);
- //// load config from txt file
- auto Config = LoadConfigTxt(det_config_path);
- int use_direction_classify = int(Config["use_direction_classify"]);
- int rec_image_height = int(Config["rec_image_height"]);
- auto charactor_dict = ReadDict(dict_path);
- charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
- charactor_dict.push_back(" ");
- auto det_predictor = loadModel(det_model_file, std::stoi(num_threads));
- auto rec_predictor = loadModel(rec_model_file, std::stoi(num_threads));
- auto cls_predictor = loadModel(cls_model_file, std::stoi(num_threads));
- std::vector<double> det_time_info = {0, 0, 0};
- std::vector<double> rec_time_info = {0, 0, 0};
- for (int i = 0; i < cv_all_img_names.size(); ++i) {
- std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
- cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
- if (!srcimg.data) {
- std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
- exit(1);
- }
- std::vector<double> det_times;
- auto boxes = RunDetModel(det_predictor, srcimg, Config, &det_times);
-
- std::vector<std::string> rec_text;
- std::vector<float> rec_text_score;
-
- std::vector<double> rec_times;
- RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
- charactor_dict, cls_predictor, use_direction_classify, &rec_times, rec_image_height);
-
- //// visualization
- auto img_vis = Visualization(srcimg, boxes);
-
- //// print recognized text
- for (int i = 0; i < rec_text.size(); i++) {
- std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
- << std::endl;
- }
- det_time_info[0] += det_times[0];
- det_time_info[1] += det_times[1];
- det_time_info[2] += det_times[2];
- rec_time_info[0] += rec_times[0];
- rec_time_info[1] += rec_times[1];
- rec_time_info[2] += rec_times[2];
- }
- if (strcmp(argv[12], "True") == 0) {
- AutoLogger autolog_det(det_model_file,
- runtime_device,
- std::stoi(num_threads),
- std::stoi(batchsize),
- "dynamic",
- precision,
- det_time_info,
- cv_all_img_names.size());
- AutoLogger autolog_rec(rec_model_file,
- runtime_device,
- std::stoi(num_threads),
- std::stoi(batchsize),
- "dynamic",
- precision,
- rec_time_info,
- cv_all_img_names.size());
- autolog_det.report();
- std::cout << std::endl;
- autolog_rec.report();
- }
- }
- void det(int argc, char **argv) {
- std::string det_model_file = argv[2];
- std::string runtime_device = argv[3];
- std::string precision = argv[4];
- std::string num_threads = argv[5];
- std::string batchsize = argv[6];
- std::string img_dir = argv[7];
- std::string det_config_path = argv[8];
- if (strcmp(argv[4], "FP32") != 0 && strcmp(argv[4], "INT8") != 0) {
- std::cerr << "Only support FP32 or INT8." << std::endl;
- exit(1);
- }
- std::vector<cv::String> cv_all_img_names;
- cv::glob(img_dir, cv_all_img_names);
- //// load config from txt file
- auto Config = LoadConfigTxt(det_config_path);
- auto det_predictor = loadModel(det_model_file, std::stoi(num_threads));
- std::vector<double> time_info = {0, 0, 0};
- for (int i = 0; i < cv_all_img_names.size(); ++i) {
- std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
- cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
- if (!srcimg.data) {
- std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
- exit(1);
- }
- std::vector<double> times;
- auto boxes = RunDetModel(det_predictor, srcimg, Config, ×);
- //// visualization
- auto img_vis = Visualization(srcimg, boxes);
- std::cout << boxes.size() << " bboxes have detected:" << std::endl;
- for (int i=0; i<boxes.size(); i++){
- std::cout << "The " << i << " box:" << std::endl;
- for (int j=0; j<4; j++){
- for (int k=0; k<2; k++){
- std::cout << boxes[i][j][k] << "\t";
- }
- }
- std::cout << std::endl;
- }
- time_info[0] += times[0];
- time_info[1] += times[1];
- time_info[2] += times[2];
- }
- if (strcmp(argv[9], "True") == 0) {
- AutoLogger autolog(det_model_file,
- runtime_device,
- std::stoi(num_threads),
- std::stoi(batchsize),
- "dynamic",
- precision,
- time_info,
- cv_all_img_names.size());
- autolog.report();
- }
- }
- void rec(int argc, char **argv) {
- std::string rec_model_file = argv[2];
- std::string runtime_device = argv[3];
- std::string precision = argv[4];
- std::string num_threads = argv[5];
- std::string batchsize = argv[6];
- std::string img_dir = argv[7];
- std::string dict_path = argv[8];
- std::string config_path = argv[9];
- if (strcmp(argv[4], "FP32") != 0 && strcmp(argv[4], "INT8") != 0) {
- std::cerr << "Only support FP32 or INT8." << std::endl;
- exit(1);
- }
- auto Config = LoadConfigTxt(config_path);
- int rec_image_height = int(Config["rec_image_height"]);
- std::vector<cv::String> cv_all_img_names;
- cv::glob(img_dir, cv_all_img_names);
- auto charactor_dict = ReadDict(dict_path);
- charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
- charactor_dict.push_back(" ");
- auto rec_predictor = loadModel(rec_model_file, std::stoi(num_threads));
- std::shared_ptr<PaddlePredictor> cls_predictor;
- std::vector<double> time_info = {0, 0, 0};
- for (int i = 0; i < cv_all_img_names.size(); ++i) {
- std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
- cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
- if (!srcimg.data) {
- std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
- exit(1);
- }
- int width = srcimg.cols;
- int height = srcimg.rows;
- std::vector<int> upper_left = {0, 0};
- std::vector<int> upper_right = {width, 0};
- std::vector<int> lower_right = {width, height};
- std::vector<int> lower_left = {0, height};
- std::vector<std::vector<int>> box = {upper_left, upper_right, lower_right, lower_left};
- std::vector<std::vector<std::vector<int>>> boxes = {box};
- std::vector<std::string> rec_text;
- std::vector<float> rec_text_score;
- std::vector<double> times;
- RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
- charactor_dict, cls_predictor, 0, ×, rec_image_height);
-
- //// print recognized text
- for (int i = 0; i < rec_text.size(); i++) {
- std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
- << std::endl;
- }
- time_info[0] += times[0];
- time_info[1] += times[1];
- time_info[2] += times[2];
- }
- // TODO: support autolog
- if (strcmp(argv[9], "True") == 0) {
- AutoLogger autolog(rec_model_file,
- runtime_device,
- std::stoi(num_threads),
- std::stoi(batchsize),
- "dynamic",
- precision,
- time_info,
- cv_all_img_names.size());
- autolog.report();
- }
- }
- int main(int argc, char **argv) {
- check_params(argc, argv);
- std::cout << "mode: " << argv[1] << endl;
- if (strcmp(argv[1], "system") == 0) {
- system(argv);
- }
- if (strcmp(argv[1], "det") == 0) {
- det(argc, argv);
- }
- if (strcmp(argv[1], "rec") == 0) {
- rec(argc, argv);
- }
- return 0;
- }
|