123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- from arch.base_module import MiddleNet, ResBlock
- from arch.encoder import Encoder
- from arch.decoder import Decoder, DecoderUnet, SingleDecoder
- from utils.load_params import load_dygraph_pretrain
- from utils.logging import get_logger
- class StyleTextRec(nn.Layer):
- def __init__(self, config):
- super(StyleTextRec, self).__init__()
- self.logger = get_logger()
- self.text_generator = TextGenerator(config["Predictor"][
- "text_generator"])
- self.bg_generator = BgGeneratorWithMask(config["Predictor"][
- "bg_generator"])
- self.fusion_generator = FusionGeneratorSimple(config["Predictor"][
- "fusion_generator"])
- bg_generator_pretrain = config["Predictor"]["bg_generator"]["pretrain"]
- text_generator_pretrain = config["Predictor"]["text_generator"][
- "pretrain"]
- fusion_generator_pretrain = config["Predictor"]["fusion_generator"][
- "pretrain"]
- load_dygraph_pretrain(
- self.bg_generator,
- self.logger,
- path=bg_generator_pretrain,
- load_static_weights=False)
- load_dygraph_pretrain(
- self.text_generator,
- self.logger,
- path=text_generator_pretrain,
- load_static_weights=False)
- load_dygraph_pretrain(
- self.fusion_generator,
- self.logger,
- path=fusion_generator_pretrain,
- load_static_weights=False)
- def forward(self, style_input, text_input):
- text_gen_output = self.text_generator.forward(style_input, text_input)
- fake_text = text_gen_output["fake_text"]
- fake_sk = text_gen_output["fake_sk"]
- bg_gen_output = self.bg_generator.forward(style_input)
- bg_encode_feature = bg_gen_output["bg_encode_feature"]
- bg_decode_feature1 = bg_gen_output["bg_decode_feature1"]
- bg_decode_feature2 = bg_gen_output["bg_decode_feature2"]
- fake_bg = bg_gen_output["fake_bg"]
- fusion_gen_output = self.fusion_generator.forward(fake_text, fake_bg)
- fake_fusion = fusion_gen_output["fake_fusion"]
- return {
- "fake_fusion": fake_fusion,
- "fake_text": fake_text,
- "fake_sk": fake_sk,
- "fake_bg": fake_bg,
- }
- class TextGenerator(nn.Layer):
- def __init__(self, config):
- super(TextGenerator, self).__init__()
- name = config["module_name"]
- encode_dim = config["encode_dim"]
- norm_layer = config["norm_layer"]
- conv_block_dropout = config["conv_block_dropout"]
- conv_block_num = config["conv_block_num"]
- conv_block_dilation = config["conv_block_dilation"]
- if norm_layer == "InstanceNorm2D":
- use_bias = True
- else:
- use_bias = False
- self.encoder_text = Encoder(
- name=name + "_encoder_text",
- in_channels=3,
- encode_dim=encode_dim,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act="ReLU",
- act_attr=None,
- conv_block_dropout=conv_block_dropout,
- conv_block_num=conv_block_num,
- conv_block_dilation=conv_block_dilation)
- self.encoder_style = Encoder(
- name=name + "_encoder_style",
- in_channels=3,
- encode_dim=encode_dim,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act="ReLU",
- act_attr=None,
- conv_block_dropout=conv_block_dropout,
- conv_block_num=conv_block_num,
- conv_block_dilation=conv_block_dilation)
- self.decoder_text = Decoder(
- name=name + "_decoder_text",
- encode_dim=encode_dim,
- out_channels=int(encode_dim / 2),
- use_bias=use_bias,
- norm_layer=norm_layer,
- act="ReLU",
- act_attr=None,
- conv_block_dropout=conv_block_dropout,
- conv_block_num=conv_block_num,
- conv_block_dilation=conv_block_dilation,
- out_conv_act="Tanh",
- out_conv_act_attr=None)
- self.decoder_sk = Decoder(
- name=name + "_decoder_sk",
- encode_dim=encode_dim,
- out_channels=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act="ReLU",
- act_attr=None,
- conv_block_dropout=conv_block_dropout,
- conv_block_num=conv_block_num,
- conv_block_dilation=conv_block_dilation,
- out_conv_act="Sigmoid",
- out_conv_act_attr=None)
- self.middle = MiddleNet(
- name=name + "_middle_net",
- in_channels=int(encode_dim / 2) + 1,
- mid_channels=encode_dim,
- out_channels=3,
- use_bias=use_bias)
- def forward(self, style_input, text_input):
- style_feature = self.encoder_style.forward(style_input)["res_blocks"]
- text_feature = self.encoder_text.forward(text_input)["res_blocks"]
- fake_c_temp = self.decoder_text.forward([text_feature,
- style_feature])["out_conv"]
- fake_sk = self.decoder_sk.forward([text_feature,
- style_feature])["out_conv"]
- fake_text = self.middle(paddle.concat((fake_c_temp, fake_sk), axis=1))
- return {"fake_sk": fake_sk, "fake_text": fake_text}
- class BgGeneratorWithMask(nn.Layer):
- def __init__(self, config):
- super(BgGeneratorWithMask, self).__init__()
- name = config["module_name"]
- encode_dim = config["encode_dim"]
- norm_layer = config["norm_layer"]
- conv_block_dropout = config["conv_block_dropout"]
- conv_block_num = config["conv_block_num"]
- conv_block_dilation = config["conv_block_dilation"]
- self.output_factor = config.get("output_factor", 1.0)
- if norm_layer == "InstanceNorm2D":
- use_bias = True
- else:
- use_bias = False
- self.encoder_bg = Encoder(
- name=name + "_encoder_bg",
- in_channels=3,
- encode_dim=encode_dim,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act="ReLU",
- act_attr=None,
- conv_block_dropout=conv_block_dropout,
- conv_block_num=conv_block_num,
- conv_block_dilation=conv_block_dilation)
- self.decoder_bg = SingleDecoder(
- name=name + "_decoder_bg",
- encode_dim=encode_dim,
- out_channels=3,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act="ReLU",
- act_attr=None,
- conv_block_dropout=conv_block_dropout,
- conv_block_num=conv_block_num,
- conv_block_dilation=conv_block_dilation,
- out_conv_act="Tanh",
- out_conv_act_attr=None)
- self.decoder_mask = Decoder(
- name=name + "_decoder_mask",
- encode_dim=encode_dim // 2,
- out_channels=1,
- use_bias=use_bias,
- norm_layer=norm_layer,
- act="ReLU",
- act_attr=None,
- conv_block_dropout=conv_block_dropout,
- conv_block_num=conv_block_num,
- conv_block_dilation=conv_block_dilation,
- out_conv_act="Sigmoid",
- out_conv_act_attr=None)
- self.middle = MiddleNet(
- name=name + "_middle_net",
- in_channels=3 + 1,
- mid_channels=encode_dim,
- out_channels=3,
- use_bias=use_bias)
- def forward(self, style_input):
- encode_bg_output = self.encoder_bg(style_input)
- decode_bg_output = self.decoder_bg(encode_bg_output["res_blocks"],
- encode_bg_output["down2"],
- encode_bg_output["down1"])
- fake_c_temp = decode_bg_output["out_conv"]
- fake_bg_mask = self.decoder_mask.forward(encode_bg_output[
- "res_blocks"])["out_conv"]
- fake_bg = self.middle(
- paddle.concat(
- (fake_c_temp, fake_bg_mask), axis=1))
- return {
- "bg_encode_feature": encode_bg_output["res_blocks"],
- "bg_decode_feature1": decode_bg_output["up1"],
- "bg_decode_feature2": decode_bg_output["up2"],
- "fake_bg": fake_bg,
- "fake_bg_mask": fake_bg_mask,
- }
- class FusionGeneratorSimple(nn.Layer):
- def __init__(self, config):
- super(FusionGeneratorSimple, self).__init__()
- name = config["module_name"]
- encode_dim = config["encode_dim"]
- norm_layer = config["norm_layer"]
- conv_block_dropout = config["conv_block_dropout"]
- conv_block_dilation = config["conv_block_dilation"]
- if norm_layer == "InstanceNorm2D":
- use_bias = True
- else:
- use_bias = False
- self._conv = nn.Conv2D(
- in_channels=6,
- out_channels=encode_dim,
- kernel_size=3,
- stride=1,
- padding=1,
- groups=1,
- weight_attr=paddle.ParamAttr(name=name + "_conv_weights"),
- bias_attr=False)
- self._res_block = ResBlock(
- name="{}_conv_block".format(name),
- channels=encode_dim,
- norm_layer=norm_layer,
- use_dropout=conv_block_dropout,
- use_dilation=conv_block_dilation,
- use_bias=use_bias)
- self._reduce_conv = nn.Conv2D(
- in_channels=encode_dim,
- out_channels=3,
- kernel_size=3,
- stride=1,
- padding=1,
- groups=1,
- weight_attr=paddle.ParamAttr(name=name + "_reduce_conv_weights"),
- bias_attr=False)
- def forward(self, fake_text, fake_bg):
- fake_concat = paddle.concat((fake_text, fake_bg), axis=1)
- fake_concat_tmp = self._conv(fake_concat)
- output_res = self._res_block(fake_concat_tmp)
- fake_fusion = self._reduce_conv(output_res)
- return {"fake_fusion": fake_fusion}
|