123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
- import yaml
- import paddle
- import paddle.distributed as dist
- from ppocr.data import build_dataloader
- from ppocr.modeling.architectures import build_model
- from ppocr.losses import build_loss
- from ppocr.optimizer import build_optimizer
- from ppocr.postprocess import build_post_process
- from ppocr.metrics import build_metric
- from ppocr.utils.save_load import load_model
- from ppocr.utils.utility import set_seed
- from ppocr.modeling.architectures import apply_to_static
- import tools.program as program
- dist.get_world_size()
- def main(config, device, logger, vdl_writer):
- # init dist environment
- if config['Global']['distributed']:
- dist.init_parallel_env()
- global_config = config['Global']
- # build dataloader
- train_dataloader = build_dataloader(config, 'Train', device, logger)
- if len(train_dataloader) == 0:
- logger.error(
- "No Images in train dataset, please ensure\n" +
- "\t1. The images num in the train label_file_list should be larger than or equal with batch size.\n"
- +
- "\t2. The annotation file and path in the configuration file are provided normally."
- )
- return
- if config['Eval']:
- valid_dataloader = build_dataloader(config, 'Eval', device, logger)
- else:
- valid_dataloader = None
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- global_config)
- # build model
- # for rec algorithm
- if hasattr(post_process_class, 'character'):
- char_num = len(getattr(post_process_class, 'character'))
- if config['Architecture']["algorithm"] in ["Distillation",
- ]: # distillation model
- for key in config['Architecture']["Models"]:
- if config['Architecture']['Models'][key]['Head'][
- 'name'] == 'MultiHead': # for multi head
- if config['PostProcess'][
- 'name'] == 'DistillationSARLabelDecode':
- char_num = char_num - 2
- # update SARLoss params
- assert list(config['Loss']['loss_config_list'][-1].keys())[
- 0] == 'DistillationSARLoss'
- config['Loss']['loss_config_list'][-1][
- 'DistillationSARLoss']['ignore_index'] = char_num + 1
- out_channels_list = {}
- out_channels_list['CTCLabelDecode'] = char_num
- out_channels_list['SARLabelDecode'] = char_num + 2
- config['Architecture']['Models'][key]['Head'][
- 'out_channels_list'] = out_channels_list
- else:
- config['Architecture']["Models"][key]["Head"][
- 'out_channels'] = char_num
- elif config['Architecture']['Head'][
- 'name'] == 'MultiHead': # for multi head
- if config['PostProcess']['name'] == 'SARLabelDecode':
- char_num = char_num - 2
- # update SARLoss params
- assert list(config['Loss']['loss_config_list'][1].keys())[
- 0] == 'SARLoss'
- if config['Loss']['loss_config_list'][1]['SARLoss'] is None:
- config['Loss']['loss_config_list'][1]['SARLoss'] = {
- 'ignore_index': char_num + 1
- }
- else:
- config['Loss']['loss_config_list'][1]['SARLoss'][
- 'ignore_index'] = char_num + 1
- out_channels_list = {}
- out_channels_list['CTCLabelDecode'] = char_num
- out_channels_list['SARLabelDecode'] = char_num + 2
- config['Architecture']['Head'][
- 'out_channels_list'] = out_channels_list
- else: # base rec model
- config['Architecture']["Head"]['out_channels'] = char_num
- if config['PostProcess']['name'] == 'SARLabelDecode': # for SAR model
- config['Loss']['ignore_index'] = char_num - 1
- model = build_model(config['Architecture'])
- use_sync_bn = config["Global"].get("use_sync_bn", False)
- if use_sync_bn:
- model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
- logger.info('convert_sync_batchnorm')
- model = apply_to_static(model, config, logger)
- # build loss
- loss_class = build_loss(config['Loss'])
- # build optim
- optimizer, lr_scheduler = build_optimizer(
- config['Optimizer'],
- epochs=config['Global']['epoch_num'],
- step_each_epoch=len(train_dataloader),
- model=model)
- # build metric
- eval_class = build_metric(config['Metric'])
- logger.info('train dataloader has {} iters'.format(len(train_dataloader)))
- if valid_dataloader is not None:
- logger.info('valid dataloader has {} iters'.format(
- len(valid_dataloader)))
- use_amp = config["Global"].get("use_amp", False)
- amp_level = config["Global"].get("amp_level", 'O2')
- amp_custom_black_list = config['Global'].get('amp_custom_black_list', [])
- if use_amp:
- AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
- if paddle.is_compiled_with_cuda():
- AMP_RELATED_FLAGS_SETTING.update({
- 'FLAGS_cudnn_batchnorm_spatial_persistent': 1
- })
- paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
- scale_loss = config["Global"].get("scale_loss", 1.0)
- use_dynamic_loss_scaling = config["Global"].get(
- "use_dynamic_loss_scaling", False)
- scaler = paddle.amp.GradScaler(
- init_loss_scaling=scale_loss,
- use_dynamic_loss_scaling=use_dynamic_loss_scaling)
- if amp_level == "O2":
- model, optimizer = paddle.amp.decorate(
- models=model,
- optimizers=optimizer,
- level=amp_level,
- master_weight=True)
- else:
- scaler = None
- # load pretrain model
- pre_best_model_dict = load_model(config, model, optimizer,
- config['Architecture']["model_type"])
- if config['Global']['distributed']:
- model = paddle.DataParallel(model)
- # start train
- program.train(config, train_dataloader, valid_dataloader, device, model,
- loss_class, optimizer, lr_scheduler, post_process_class,
- eval_class, pre_best_model_dict, logger, vdl_writer, scaler,
- amp_level, amp_custom_black_list)
- def test_reader(config, device, logger):
- loader = build_dataloader(config, 'Train', device, logger)
- import time
- starttime = time.time()
- count = 0
- try:
- for data in loader():
- count += 1
- if count % 1 == 0:
- batch_time = time.time() - starttime
- starttime = time.time()
- logger.info("reader: {}, {}, {}".format(
- count, len(data[0]), batch_time))
- except Exception as e:
- logger.info(e)
- logger.info("finish reader: {}, Success!".format(count))
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess(is_train=True)
- seed = config['Global']['seed'] if 'seed' in config['Global'] else 1024
- set_seed(seed)
- main(config, device, logger, vdl_writer)
- # test_reader(config, device, logger)
|