123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import json
- import paddle
- from ppocr.data import create_operators, transform
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.utils.save_load import load_model
- from ppocr.utils.visual import draw_ser_results
- from ppocr.utils.utility import get_image_file_list, load_vqa_bio_label_maps
- import tools.program as program
- def to_tensor(data):
- import numbers
- from collections import defaultdict
- data_dict = defaultdict(list)
- to_tensor_idxs = []
- for idx, v in enumerate(data):
- if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)):
- if idx not in to_tensor_idxs:
- to_tensor_idxs.append(idx)
- data_dict[idx].append(v)
- for idx in to_tensor_idxs:
- data_dict[idx] = paddle.to_tensor(data_dict[idx])
- return list(data_dict.values())
- class SerPredictor(object):
- def __init__(self, config):
- global_config = config['Global']
- self.algorithm = config['Architecture']["algorithm"]
- # build post process
- self.post_process_class = build_post_process(config['PostProcess'],
- global_config)
- # build model
- self.model = build_model(config['Architecture'])
- load_model(
- config, self.model, model_type=config['Architecture']["model_type"])
- from paddleocr import PaddleOCR
- self.ocr_engine = PaddleOCR(
- use_angle_cls=False,
- show_log=False,
- rec_model_dir=global_config.get("kie_rec_model_dir", None),
- det_model_dir=global_config.get("kie_det_model_dir", None),
- use_gpu=global_config['use_gpu'])
- # create data ops
- transforms = []
- for op in config['Eval']['dataset']['transforms']:
- op_name = list(op)[0]
- if 'Label' in op_name:
- op[op_name]['ocr_engine'] = self.ocr_engine
- elif op_name == 'KeepKeys':
- op[op_name]['keep_keys'] = [
- 'input_ids', 'bbox', 'attention_mask', 'token_type_ids',
- 'image', 'labels', 'segment_offset_id', 'ocr_info',
- 'entities'
- ]
- transforms.append(op)
- if config["Global"].get("infer_mode", None) is None:
- global_config['infer_mode'] = True
- self.ops = create_operators(config['Eval']['dataset']['transforms'],
- global_config)
- self.model.eval()
- def __call__(self, data):
- with open(data["img_path"], 'rb') as f:
- img = f.read()
- data["image"] = img
- batch = transform(data, self.ops)
- batch = to_tensor(batch)
- preds = self.model(batch)
- post_result = self.post_process_class(
- preds, segment_offset_ids=batch[6], ocr_infos=batch[7])
- return post_result, batch
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess()
- os.makedirs(config['Global']['save_res_path'], exist_ok=True)
- ser_engine = SerPredictor(config)
- if config["Global"].get("infer_mode", None) is False:
- data_dir = config['Eval']['dataset']['data_dir']
- with open(config['Global']['infer_img'], "rb") as f:
- infer_imgs = f.readlines()
- else:
- infer_imgs = get_image_file_list(config['Global']['infer_img'])
- with open(
- os.path.join(config['Global']['save_res_path'],
- "infer_results.txt"),
- "w",
- encoding='utf-8') as fout:
- for idx, info in enumerate(infer_imgs):
- if config["Global"].get("infer_mode", None) is False:
- data_line = info.decode('utf-8')
- substr = data_line.strip("\n").split("\t")
- img_path = os.path.join(data_dir, substr[0])
- data = {'img_path': img_path, 'label': substr[1]}
- else:
- img_path = info
- data = {'img_path': img_path}
- save_img_path = os.path.join(
- config['Global']['save_res_path'],
- os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg")
- result, _ = ser_engine(data)
- result = result[0]
- fout.write(img_path + "\t" + json.dumps(
- {
- "ocr_info": result,
- }, ensure_ascii=False) + "\n")
- img_res = draw_ser_results(img_path, result)
- cv2.imwrite(save_img_path, img_res)
- logger.info("process: [{}/{}], save result to {}".format(
- idx, len(infer_imgs), save_img_path))
|