install.md 4.8 KB

1. 环境准备

本教程适用于test_tipc目录下基础功能测试的运行环境搭建。

推荐环境:

  • CUDA 10.1/10.2
  • CUDNN 7.6/cudnn8.1
  • TensorRT 6.1.0.5 / 7.1 / 7.2

环境配置可以选择docker镜像安装,或者在本地环境Python搭建环境。推荐使用docker镜像安装,避免不必要的环境配置。

2. Docker 镜像安装

推荐docker镜像安装,按照如下命令创建镜像,当前目录映射到镜像中的/paddle目录下

nvidia-docker run --name paddle -it -v $PWD:/paddle paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash
cd /paddle

# 安装带TRT的paddle
pip3.7 install https://paddle-wheel.bj.bcebos.com/with-trt/2.1.3/linux-gpu-cuda10.1-cudnn7-mkl-gcc8.2-trt6-avx/paddlepaddle_gpu-2.1.3.post101-cp37-cp37m-linux_x86_64.whl

3 Python 环境构建

非docker环境下,环境配置比较灵活,推荐环境组合配置:

  • CUDA10.1 + CUDNN7.6 + TensorRT 6
  • CUDA10.2 + CUDNN8.1 + TensorRT 7
  • CUDA11.1 + CUDNN8.1 + TensorRT 7

下面以 CUDA10.2 + CUDNN8.1 + TensorRT 7 配置为例,介绍环境配置的流程。

3.1 安装CUDNN

如果当前环境满足CUDNN版本的要求,可以跳过此步骤。

以CUDNN8.1 安装安装为例,安装步骤如下,首先下载CUDNN,从Nvidia官网下载CUDNN8.1版本,下载符合当前系统版本的三个deb文件,分别是:

  • cuDNN Runtime Library ,如:libcudnn8_8.1.0.77-1+cuda10.2_amd64.deb
  • cuDNN Developer Library ,如:libcudnn8-dev_8.1.0.77-1+cuda10.2_amd64.deb
  • cuDNN Code Samples,如:libcudnn8-samples_8.1.0.77-1+cuda10.2_amd64.deb

deb安装可以参考官方文档,安装方式如下

# x.x.x表示下载的版本号
# $HOME为工作目录
sudo dpkg -i libcudnn8_x.x.x-1+cudax.x_arm64.deb
sudo dpkg -i libcudnn8-dev_8.x.x.x-1+cudax.x_arm64.deb
sudo dpkg -i libcudnn8-samples_8.x.x.x-1+cudax.x_arm64.deb

# 验证是否正确安装
cp -r /usr/src/cudnn_samples_v8/ $HOME
cd  $HOME/cudnn_samples_v8/mnistCUDNN

# 编译
make clean && make
./mnistCUDNN

如果运行mnistCUDNN完后提示运行成功,则表示安装成功。如果运行后出现freeimage相关的报错,需要按照提示安装freeimage库:

sudo apt-get install libfreeimage-dev
sudo apt-get install libfreeimage

3.2 安装TensorRT

首先,从Nvidia官网TensorRT板块下载TensorRT,这里选择7.1.3.4版本的TensorRT,注意选择适合自己系统版本和CUDA版本的TensorRT,另外建议下载TAR package的安装包。

以Ubuntu16.04+CUDA10.2为例,下载并解压后可以参考官方文档的安装步骤,按照如下步骤安装:

# 以下安装命令中 '${version}' 为下载的TensorRT版本,如7.1.3.4
# 设置环境变量,<TensorRT-${version}/lib> 为解压后的TensorRT的lib目录
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<TensorRT-${version}/lib>

# 安装TensorRT
cd TensorRT-${version}/python
pip3.7 install tensorrt-*-cp3x-none-linux_x86_64.whl

# 安装graphsurgeon
cd TensorRT-${version}/graphsurgeon

3.3 安装PaddlePaddle

下载支持TensorRT版本的Paddle安装包,注意安装包的TensorRT版本需要与本地TensorRT一致,下载链接 选择下载 linux-cuda10.2-trt7-gcc8.2 Python3.7版本的Paddle:

# 从下载链接中可以看到是paddle2.1.1-cuda10.2-cudnn8.1版本
wget  https://paddle-wheel.bj.bcebos.com/with-trt/2.1.1-gpu-cuda10.2-cudnn8.1-mkl-gcc8.2/paddlepaddle_gpu-2.1.1-cp37-cp37m-linux_x86_64.whl
pip3.7 install -U paddlepaddle_gpu-2.1.1-cp37-cp37m-linux_x86_64.whl

4. 安装PaddleOCR依赖

# 安装AutoLog
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
pip3.7 install -r requirements.txt
python3.7 setup.py bdist_wheel
pip3.7 install ./dist/auto_log-1.0.0-py3-none-any.whl

# 下载OCR代码
cd ../
git clone https://github.com/PaddlePaddle/PaddleOCR

安装PaddleOCR依赖:

cd PaddleOCR
pip3.7 install -r requirements.txt

FAQ :

Q. You are using Paddle compiled with TensorRT, but TensorRT dynamic library is not found. Ignore this if TensorRT is not needed.

A. 问题一般是当前安装paddle版本带TRT,但是本地环境找不到TensorRT的预测库,需要下载TensorRT库,解压后设置环境变量LD_LIBRARY_PATH; 如:

export LD_LIBRARY_PATH=/usr/local/python3.7.0/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/paddle/package/TensorRT-6.0.1.5/lib

或者问题是下载的TensorRT版本和当前paddle中编译的TRT版本不匹配,需要下载版本相符的TensorRT重新安装。