123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- import subprocess
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import json
- import numpy as np
- import time
- import logging
- from copy import deepcopy
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppocr.utils.logging import get_logger
- from ppocr.utils.visual import draw_ser_results, draw_re_results
- from tools.infer.predict_system import TextSystem
- from ppstructure.layout.predict_layout import LayoutPredictor
- from ppstructure.table.predict_table import TableSystem, to_excel
- from ppstructure.utility import parse_args, draw_structure_result
- logger = get_logger()
- class StructureSystem(object):
- def __init__(self, args):
- self.mode = args.mode
- self.recovery = args.recovery
- self.image_orientation_predictor = None
- if args.image_orientation:
- import paddleclas
- self.image_orientation_predictor = paddleclas.PaddleClas(
- model_name="text_image_orientation")
- if self.mode == 'structure':
- if not args.show_log:
- logger.setLevel(logging.INFO)
- if args.layout == False and args.ocr == True:
- args.ocr = False
- logger.warning(
- "When args.layout is false, args.ocr is automatically set to false"
- )
- args.drop_score = 0
- # init model
- self.layout_predictor = None
- self.text_system = None
- self.table_system = None
- if args.layout:
- self.layout_predictor = LayoutPredictor(args)
- if args.ocr:
- self.text_system = TextSystem(args)
- if args.table:
- if self.text_system is not None:
- self.table_system = TableSystem(
- args, self.text_system.text_detector,
- self.text_system.text_recognizer)
- else:
- self.table_system = TableSystem(args)
- elif self.mode == 'kie':
- from ppstructure.kie.predict_kie_token_ser_re import SerRePredictor
- self.kie_predictor = SerRePredictor(args)
- def __call__(self, img, return_ocr_result_in_table=False, img_idx=0):
- time_dict = {
- 'image_orientation': 0,
- 'layout': 0,
- 'table': 0,
- 'table_match': 0,
- 'det': 0,
- 'rec': 0,
- 'kie': 0,
- 'all': 0
- }
- start = time.time()
- if self.image_orientation_predictor is not None:
- tic = time.time()
- cls_result = self.image_orientation_predictor.predict(
- input_data=img)
- cls_res = next(cls_result)
- angle = cls_res[0]['label_names'][0]
- cv_rotate_code = {
- '90': cv2.ROTATE_90_COUNTERCLOCKWISE,
- '180': cv2.ROTATE_180,
- '270': cv2.ROTATE_90_CLOCKWISE
- }
- if angle in cv_rotate_code:
- img = cv2.rotate(img, cv_rotate_code[angle])
- toc = time.time()
- time_dict['image_orientation'] = toc - tic
- if self.mode == 'structure':
- ori_im = img.copy()
- if self.layout_predictor is not None:
- layout_res, elapse = self.layout_predictor(img)
- time_dict['layout'] += elapse
- else:
- h, w = ori_im.shape[:2]
- layout_res = [dict(bbox=None, label='table')]
- res_list = []
- for region in layout_res:
- res = ''
- if region['bbox'] is not None:
- x1, y1, x2, y2 = region['bbox']
- x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
- roi_img = ori_im[y1:y2, x1:x2, :]
- else:
- x1, y1, x2, y2 = 0, 0, w, h
- roi_img = ori_im
- if region['label'] == 'table':
- if self.table_system is not None:
- res, table_time_dict = self.table_system(
- roi_img, return_ocr_result_in_table)
- time_dict['table'] += table_time_dict['table']
- time_dict['table_match'] += table_time_dict['match']
- time_dict['det'] += table_time_dict['det']
- time_dict['rec'] += table_time_dict['rec']
- else:
- if self.text_system is not None:
- if self.recovery:
- wht_im = np.ones(ori_im.shape, dtype=ori_im.dtype)
- wht_im[y1:y2, x1:x2, :] = roi_img
- filter_boxes, filter_rec_res, ocr_time_dict = self.text_system(
- wht_im)
- else:
- filter_boxes, filter_rec_res, ocr_time_dict = self.text_system(
- roi_img)
- time_dict['det'] += ocr_time_dict['det']
- time_dict['rec'] += ocr_time_dict['rec']
- # remove style char,
- # when using the recognition model trained on the PubtabNet dataset,
- # it will recognize the text format in the table, such as <b>
- style_token = [
- '<strike>', '<strike>', '<sup>', '</sub>', '<b>',
- '</b>', '<sub>', '</sup>', '<overline>',
- '</overline>', '<underline>', '</underline>', '<i>',
- '</i>'
- ]
- res = []
- for box, rec_res in zip(filter_boxes, filter_rec_res):
- rec_str, rec_conf = rec_res
- for token in style_token:
- if token in rec_str:
- rec_str = rec_str.replace(token, '')
- if not self.recovery:
- box += [x1, y1]
- res.append({
- 'text': rec_str,
- 'confidence': float(rec_conf),
- 'text_region': box.tolist()
- })
- res_list.append({
- 'type': region['label'].lower(),
- 'bbox': [x1, y1, x2, y2],
- 'img': roi_img,
- 'res': res,
- 'img_idx': img_idx
- })
- end = time.time()
- time_dict['all'] = end - start
- return res_list, time_dict
- elif self.mode == 'kie':
- re_res, elapse = self.kie_predictor(img)
- time_dict['kie'] = elapse
- time_dict['all'] = elapse
- return re_res[0], time_dict
- return None, None
- def save_structure_res(res, save_folder, img_name, img_idx=0):
- excel_save_folder = os.path.join(save_folder, img_name)
- os.makedirs(excel_save_folder, exist_ok=True)
- res_cp = deepcopy(res)
- # save res
- with open(
- os.path.join(excel_save_folder, 'res_{}.txt'.format(img_idx)),
- 'w',
- encoding='utf8') as f:
- for region in res_cp:
- roi_img = region.pop('img')
- f.write('{}\n'.format(json.dumps(region)))
- if region['type'].lower() == 'table' and len(region[
- 'res']) > 0 and 'html' in region['res']:
- excel_path = os.path.join(
- excel_save_folder,
- '{}_{}.xlsx'.format(region['bbox'], img_idx))
- to_excel(region['res']['html'], excel_path)
- elif region['type'].lower() == 'figure':
- img_path = os.path.join(
- excel_save_folder,
- '{}_{}.jpg'.format(region['bbox'], img_idx))
- cv2.imwrite(img_path, roi_img)
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- image_file_list = image_file_list
- image_file_list = image_file_list[args.process_id::args.total_process_num]
- if not args.use_pdf2docx_api:
- structure_sys = StructureSystem(args)
- save_folder = os.path.join(args.output, structure_sys.mode)
- os.makedirs(save_folder, exist_ok=True)
- img_num = len(image_file_list)
- for i, image_file in enumerate(image_file_list):
- logger.info("[{}/{}] {}".format(i, img_num, image_file))
- img, flag_gif, flag_pdf = check_and_read(image_file)
- img_name = os.path.basename(image_file).split('.')[0]
- if args.recovery and args.use_pdf2docx_api and flag_pdf:
- from pdf2docx.converter import Converter
- os.makedirs(args.output, exist_ok=True)
- docx_file = os.path.join(args.output,
- '{}_api.docx'.format(img_name))
- cv = Converter(image_file)
- cv.convert(docx_file)
- cv.close()
- logger.info('docx save to {}'.format(docx_file))
- continue
- if not flag_gif and not flag_pdf:
- img = cv2.imread(image_file)
- if not flag_pdf:
- if img is None:
- logger.error("error in loading image:{}".format(image_file))
- continue
- imgs = [img]
- else:
- imgs = img
- all_res = []
- for index, img in enumerate(imgs):
- res, time_dict = structure_sys(img, img_idx=index)
- img_save_path = os.path.join(save_folder, img_name,
- 'show_{}.jpg'.format(index))
- os.makedirs(os.path.join(save_folder, img_name), exist_ok=True)
- if structure_sys.mode == 'structure' and res != []:
- draw_img = draw_structure_result(img, res, args.vis_font_path)
- save_structure_res(res, save_folder, img_name, index)
- elif structure_sys.mode == 'kie':
- if structure_sys.kie_predictor.predictor is not None:
- draw_img = draw_re_results(
- img, res, font_path=args.vis_font_path)
- else:
- draw_img = draw_ser_results(
- img, res, font_path=args.vis_font_path)
- with open(
- os.path.join(save_folder, img_name,
- 'res_{}_kie.txt'.format(index)),
- 'w',
- encoding='utf8') as f:
- res_str = '{}\t{}\n'.format(
- image_file,
- json.dumps(
- {
- "ocr_info": res
- }, ensure_ascii=False))
- f.write(res_str)
- if res != []:
- cv2.imwrite(img_save_path, draw_img)
- logger.info('result save to {}'.format(img_save_path))
- if args.recovery and res != []:
- from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
- h, w, _ = img.shape
- res = sorted_layout_boxes(res, w)
- all_res += res
- if args.recovery and all_res != []:
- try:
- convert_info_docx(img, all_res, save_folder, img_name)
- except Exception as ex:
- logger.error("error in layout recovery image:{}, err msg: {}".
- format(image_file, ex))
- continue
- logger.info("Predict time : {:.3f}s".format(time_dict['all']))
- if __name__ == "__main__":
- args = parse_args()
- if args.use_mp:
- p_list = []
- total_process_num = args.total_process_num
- for process_id in range(total_process_num):
- cmd = [sys.executable, "-u"] + sys.argv + [
- "--process_id={}".format(process_id),
- "--use_mp={}".format(False)
- ]
- p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
- p_list.append(p)
- for p in p_list:
- p.wait()
- else:
- main(args)
|