123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/FudanVI/FudanOCR/blob/main/scene-text-telescope/model/tbsrn.py
- """
- import math
- import warnings
- import numpy as np
- import paddle
- from paddle import nn
- import string
- warnings.filterwarnings("ignore")
- from .tps_spatial_transformer import TPSSpatialTransformer
- from .stn import STN as STNHead
- from .tsrn import GruBlock, mish, UpsampleBLock
- from ppocr.modeling.heads.sr_rensnet_transformer import Transformer, LayerNorm, \
- PositionwiseFeedForward, MultiHeadedAttention
- def positionalencoding2d(d_model, height, width):
- """
- :param d_model: dimension of the model
- :param height: height of the positions
- :param width: width of the positions
- :return: d_model*height*width position matrix
- """
- if d_model % 4 != 0:
- raise ValueError("Cannot use sin/cos positional encoding with "
- "odd dimension (got dim={:d})".format(d_model))
- pe = paddle.zeros([d_model, height, width])
- # Each dimension use half of d_model
- d_model = int(d_model / 2)
- div_term = paddle.exp(paddle.arange(0., d_model, 2) *
- -(math.log(10000.0) / d_model))
- pos_w = paddle.arange(0., width, dtype='float32').unsqueeze(1)
- pos_h = paddle.arange(0., height, dtype='float32').unsqueeze(1)
- pe[0:d_model:2, :, :] = paddle.sin(pos_w * div_term).transpose([1, 0]).unsqueeze(1).tile([1, height, 1])
- pe[1:d_model:2, :, :] = paddle.cos(pos_w * div_term).transpose([1, 0]).unsqueeze(1).tile([1, height, 1])
- pe[d_model::2, :, :] = paddle.sin(pos_h * div_term).transpose([1, 0]).unsqueeze(2).tile([1, 1, width])
- pe[d_model + 1::2, :, :] = paddle.cos(pos_h * div_term).transpose([1, 0]).unsqueeze(2).tile([1, 1, width])
- return pe
- class FeatureEnhancer(nn.Layer):
- def __init__(self):
- super(FeatureEnhancer, self).__init__()
- self.multihead = MultiHeadedAttention(h=4, d_model=128, dropout=0.1)
- self.mul_layernorm1 = LayerNorm(features=128)
- self.pff = PositionwiseFeedForward(128, 128)
- self.mul_layernorm3 = LayerNorm(features=128)
- self.linear = nn.Linear(128, 64)
- def forward(self, conv_feature):
- '''
- text : (batch, seq_len, embedding_size)
- global_info: (batch, embedding_size, 1, 1)
- conv_feature: (batch, channel, H, W)
- '''
- batch = conv_feature.shape[0]
- position2d = positionalencoding2d(64, 16, 64).cast('float32').unsqueeze(0).reshape([1, 64, 1024])
- position2d = position2d.tile([batch, 1, 1])
- conv_feature = paddle.concat([conv_feature, position2d], 1) # batch, 128(64+64), 32, 128
- result = conv_feature.transpose([0, 2, 1])
- origin_result = result
- result = self.mul_layernorm1(origin_result + self.multihead(result, result, result, mask=None)[0])
- origin_result = result
- result = self.mul_layernorm3(origin_result + self.pff(result))
- result = self.linear(result)
- return result.transpose([0, 2, 1])
- def str_filt(str_, voc_type):
- alpha_dict = {
- 'digit': string.digits,
- 'lower': string.digits + string.ascii_lowercase,
- 'upper': string.digits + string.ascii_letters,
- 'all': string.digits + string.ascii_letters + string.punctuation
- }
- if voc_type == 'lower':
- str_ = str_.lower()
- for char in str_:
- if char not in alpha_dict[voc_type]:
- str_ = str_.replace(char, '')
- str_ = str_.lower()
- return str_
- class TBSRN(nn.Layer):
- def __init__(self,
- in_channels=3,
- scale_factor=2,
- width=128,
- height=32,
- STN=True,
- srb_nums=5,
- mask=False,
- hidden_units=32,
- infer_mode=False):
- super(TBSRN, self).__init__()
- in_planes = 3
- if mask:
- in_planes = 4
- assert math.log(scale_factor, 2) % 1 == 0
- upsample_block_num = int(math.log(scale_factor, 2))
- self.block1 = nn.Sequential(
- nn.Conv2D(in_planes, 2 * hidden_units, kernel_size=9, padding=4),
- nn.PReLU()
- # nn.ReLU()
- )
- self.srb_nums = srb_nums
- for i in range(srb_nums):
- setattr(self, 'block%d' % (i + 2), RecurrentResidualBlock(2 * hidden_units))
- setattr(self, 'block%d' % (srb_nums + 2),
- nn.Sequential(
- nn.Conv2D(2 * hidden_units, 2 * hidden_units, kernel_size=3, padding=1),
- nn.BatchNorm2D(2 * hidden_units)
- ))
- # self.non_local = NonLocalBlock2D(64, 64)
- block_ = [UpsampleBLock(2 * hidden_units, 2) for _ in range(upsample_block_num)]
- block_.append(nn.Conv2D(2 * hidden_units, in_planes, kernel_size=9, padding=4))
- setattr(self, 'block%d' % (srb_nums + 3), nn.Sequential(*block_))
- self.tps_inputsize = [height // scale_factor, width // scale_factor]
- tps_outputsize = [height // scale_factor, width // scale_factor]
- num_control_points = 20
- tps_margins = [0.05, 0.05]
- self.stn = STN
- self.out_channels = in_channels
- if self.stn:
- self.tps = TPSSpatialTransformer(
- output_image_size=tuple(tps_outputsize),
- num_control_points=num_control_points,
- margins=tuple(tps_margins))
- self.stn_head = STNHead(
- in_channels=in_planes,
- num_ctrlpoints=num_control_points,
- activation='none')
- self.infer_mode = infer_mode
- self.english_alphabet = '-0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
- self.english_dict = {}
- for index in range(len(self.english_alphabet)):
- self.english_dict[self.english_alphabet[index]] = index
- transformer = Transformer(alphabet='-0123456789abcdefghijklmnopqrstuvwxyz')
- self.transformer = transformer
- for param in self.transformer.parameters():
- param.trainable = False
- def label_encoder(self, label):
- batch = len(label)
- length = [len(i) for i in label]
- length_tensor = paddle.to_tensor(length, dtype='int64')
- max_length = max(length)
- input_tensor = np.zeros((batch, max_length))
- for i in range(batch):
- for j in range(length[i] - 1):
- input_tensor[i][j + 1] = self.english_dict[label[i][j]]
- text_gt = []
- for i in label:
- for j in i:
- text_gt.append(self.english_dict[j])
- text_gt = paddle.to_tensor(text_gt, dtype='int64')
- input_tensor = paddle.to_tensor(input_tensor, dtype='int64')
- return length_tensor, input_tensor, text_gt
- def forward(self, x):
- output = {}
- if self.infer_mode:
- output["lr_img"] = x
- y = x
- else:
- output["lr_img"] = x[0]
- output["hr_img"] = x[1]
- y = x[0]
- if self.stn and self.training:
- _, ctrl_points_x = self.stn_head(y)
- y, _ = self.tps(y, ctrl_points_x)
- block = {'1': self.block1(y)}
- for i in range(self.srb_nums + 1):
- block[str(i + 2)] = getattr(self,
- 'block%d' % (i + 2))(block[str(i + 1)])
- block[str(self.srb_nums + 3)] = getattr(self, 'block%d' % (self.srb_nums + 3)) \
- ((block['1'] + block[str(self.srb_nums + 2)]))
- sr_img = paddle.tanh(block[str(self.srb_nums + 3)])
- output["sr_img"] = sr_img
- if self.training:
- hr_img = x[1]
- # add transformer
- label = [str_filt(i, 'lower') + '-' for i in x[2]]
- length_tensor, input_tensor, text_gt = self.label_encoder(label)
- hr_pred, word_attention_map_gt, hr_correct_list = self.transformer(hr_img, length_tensor,
- input_tensor)
- sr_pred, word_attention_map_pred, sr_correct_list = self.transformer(sr_img, length_tensor,
- input_tensor)
- output["hr_img"] = hr_img
- output["hr_pred"] = hr_pred
- output["text_gt"] = text_gt
- output["word_attention_map_gt"] = word_attention_map_gt
- output["sr_pred"] = sr_pred
- output["word_attention_map_pred"] = word_attention_map_pred
- return output
- class RecurrentResidualBlock(nn.Layer):
- def __init__(self, channels):
- super(RecurrentResidualBlock, self).__init__()
- self.conv1 = nn.Conv2D(channels, channels, kernel_size=3, padding=1)
- self.bn1 = nn.BatchNorm2D(channels)
- self.gru1 = GruBlock(channels, channels)
- # self.prelu = nn.ReLU()
- self.prelu = mish()
- self.conv2 = nn.Conv2D(channels, channels, kernel_size=3, padding=1)
- self.bn2 = nn.BatchNorm2D(channels)
- self.gru2 = GruBlock(channels, channels)
- self.feature_enhancer = FeatureEnhancer()
- for p in self.parameters():
- if p.dim() > 1:
- paddle.nn.initializer.XavierUniform(p)
- def forward(self, x):
- residual = self.conv1(x)
- residual = self.bn1(residual)
- residual = self.prelu(residual)
- residual = self.conv2(residual)
- residual = self.bn2(residual)
- size = residual.shape
- residual = residual.reshape([size[0], size[1], -1])
- residual = self.feature_enhancer(residual)
- residual = residual.reshape([size[0], size[1], size[2], size[3]])
- return x + residual
|