| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 | # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##    http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""This code is refer from: https://github.com/FangShancheng/ABINet/tree/main/modules"""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport paddlefrom paddle import ParamAttrfrom paddle.nn.initializer import KaimingNormalimport paddle.nn as nnimport paddle.nn.functional as Fimport numpy as npimport math__all__ = ["ResNet45"]def conv1x1(in_planes, out_planes, stride=1):    return nn.Conv2D(        in_planes,        out_planes,        kernel_size=1,        stride=1,        weight_attr=ParamAttr(initializer=KaimingNormal()),        bias_attr=False)def conv3x3(in_channel, out_channel, stride=1):    return nn.Conv2D(        in_channel,        out_channel,        kernel_size=3,        stride=stride,        padding=1,        weight_attr=ParamAttr(initializer=KaimingNormal()),        bias_attr=False)class BasicBlock(nn.Layer):    expansion = 1    def __init__(self, in_channels, channels, stride=1, downsample=None):        super().__init__()        self.conv1 = conv1x1(in_channels, channels)        self.bn1 = nn.BatchNorm2D(channels)        self.relu = nn.ReLU()        self.conv2 = conv3x3(channels, channels, stride)        self.bn2 = nn.BatchNorm2D(channels)        self.downsample = downsample        self.stride = stride    def forward(self, x):        residual = x        out = self.conv1(x)        out = self.bn1(out)        out = self.relu(out)        out = self.conv2(out)        out = self.bn2(out)        if self.downsample is not None:            residual = self.downsample(x)        out += residual        out = self.relu(out)        return outclass ResNet45(nn.Layer):    def __init__(self,                 in_channels=3,                 block=BasicBlock,                 layers=[3, 4, 6, 6, 3],                 strides=[2, 1, 2, 1, 1]):        self.inplanes = 32        super(ResNet45, self).__init__()        self.conv1 = nn.Conv2D(            in_channels,            32,            kernel_size=3,            stride=1,            padding=1,            weight_attr=ParamAttr(initializer=KaimingNormal()),            bias_attr=False)        self.bn1 = nn.BatchNorm2D(32)        self.relu = nn.ReLU()        self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0])        self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1])        self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2])        self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3])        self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4])        self.out_channels = 512    def _make_layer(self, block, planes, blocks, stride=1):        downsample = None        if stride != 1 or self.inplanes != planes * block.expansion:            # downsample = True            downsample = nn.Sequential(                nn.Conv2D(                    self.inplanes,                    planes * block.expansion,                    kernel_size=1,                    stride=stride,                    weight_attr=ParamAttr(initializer=KaimingNormal()),                    bias_attr=False),                nn.BatchNorm2D(planes * block.expansion), )        layers = []        layers.append(block(self.inplanes, planes, stride, downsample))        self.inplanes = planes * block.expansion        for i in range(1, blocks):            layers.append(block(self.inplanes, planes))        return nn.Sequential(*layers)    def forward(self, x):        x = self.conv1(x)        x = self.bn1(x)        x = self.relu(x)        x = self.layer1(x)        x = self.layer2(x)        x = self.layer3(x)        x = self.layer4(x)        x = self.layer5(x)        return x
 |