123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- class CosineEmbeddingLoss(nn.Layer):
- def __init__(self, margin=0.):
- super(CosineEmbeddingLoss, self).__init__()
- self.margin = margin
- self.epsilon = 1e-12
- def forward(self, x1, x2, target):
- similarity = paddle.sum(
- x1 * x2, axis=-1) / (paddle.norm(
- x1, axis=-1) * paddle.norm(
- x2, axis=-1) + self.epsilon)
- one_list = paddle.full_like(target, fill_value=1)
- out = paddle.mean(
- paddle.where(
- paddle.equal(target, one_list), 1. - similarity,
- paddle.maximum(
- paddle.zeros_like(similarity), similarity - self.margin)))
- return out
- class AsterLoss(nn.Layer):
- def __init__(self,
- weight=None,
- size_average=True,
- ignore_index=-100,
- sequence_normalize=False,
- sample_normalize=True,
- **kwargs):
- super(AsterLoss, self).__init__()
- self.weight = weight
- self.size_average = size_average
- self.ignore_index = ignore_index
- self.sequence_normalize = sequence_normalize
- self.sample_normalize = sample_normalize
- self.loss_sem = CosineEmbeddingLoss()
- self.is_cosin_loss = True
- self.loss_func_rec = nn.CrossEntropyLoss(weight=None, reduction='none')
- def forward(self, predicts, batch):
- targets = batch[1].astype("int64")
- label_lengths = batch[2].astype('int64')
- sem_target = batch[3].astype('float32')
- embedding_vectors = predicts['embedding_vectors']
- rec_pred = predicts['rec_pred']
- if not self.is_cosin_loss:
- sem_loss = paddle.sum(self.loss_sem(embedding_vectors, sem_target))
- else:
- label_target = paddle.ones([embedding_vectors.shape[0]])
- sem_loss = paddle.sum(
- self.loss_sem(embedding_vectors, sem_target, label_target))
- # rec loss
- batch_size, def_max_length = targets.shape[0], targets.shape[1]
- mask = paddle.zeros([batch_size, def_max_length])
- for i in range(batch_size):
- mask[i, :label_lengths[i]] = 1
- mask = paddle.cast(mask, "float32")
- max_length = max(label_lengths)
- assert max_length == rec_pred.shape[1]
- targets = targets[:, :max_length]
- mask = mask[:, :max_length]
- rec_pred = paddle.reshape(rec_pred, [-1, rec_pred.shape[2]])
- input = nn.functional.log_softmax(rec_pred, axis=1)
- targets = paddle.reshape(targets, [-1, 1])
- mask = paddle.reshape(mask, [-1, 1])
- output = -paddle.index_sample(input, index=targets) * mask
- output = paddle.sum(output)
- if self.sequence_normalize:
- output = output / paddle.sum(mask)
- if self.sample_normalize:
- output = output / batch_size
- loss = output + sem_loss * 0.1
- return {'loss': loss}
|