12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/DB_loss.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import nn
- from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
- class DBLoss(nn.Layer):
- """
- Differentiable Binarization (DB) Loss Function
- args:
- param (dict): the super paramter for DB Loss
- """
- def __init__(self,
- balance_loss=True,
- main_loss_type='DiceLoss',
- alpha=5,
- beta=10,
- ohem_ratio=3,
- eps=1e-6,
- **kwargs):
- super(DBLoss, self).__init__()
- self.alpha = alpha
- self.beta = beta
- self.dice_loss = DiceLoss(eps=eps)
- self.l1_loss = MaskL1Loss(eps=eps)
- self.bce_loss = BalanceLoss(
- balance_loss=balance_loss,
- main_loss_type=main_loss_type,
- negative_ratio=ohem_ratio)
- def forward(self, predicts, labels):
- predict_maps = predicts['maps']
- label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[
- 1:]
- shrink_maps = predict_maps[:, 0, :, :]
- threshold_maps = predict_maps[:, 1, :, :]
- binary_maps = predict_maps[:, 2, :, :]
- loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map,
- label_shrink_mask)
- loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map,
- label_threshold_mask)
- loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map,
- label_shrink_mask)
- loss_shrink_maps = self.alpha * loss_shrink_maps
- loss_threshold_maps = self.beta * loss_threshold_maps
- loss_all = loss_shrink_maps + loss_threshold_maps \
- + loss_binary_maps
- losses = {'loss': loss_all, \
- "loss_shrink_maps": loss_shrink_maps, \
- "loss_threshold_maps": loss_threshold_maps, \
- "loss_binary_maps": loss_binary_maps}
- return losses
|