123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
- sys.path.insert(
- 0, os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
- import argparse
- import paddle
- from paddle.jit import to_static
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.utils.save_load import load_model
- from ppocr.utils.logging import get_logger
- from tools.program import load_config, merge_config, ArgsParser
- from ppocr.metrics import build_metric
- import tools.program as program
- from paddleslim.dygraph.quant import QAT
- from ppocr.data import build_dataloader
- from tools.export_model import export_single_model
- def main():
- ############################################################################################################
- # 1. quantization configs
- ############################################################################################################
- quant_config = {
- # weight preprocess type, default is None and no preprocessing is performed.
- 'weight_preprocess_type': None,
- # activation preprocess type, default is None and no preprocessing is performed.
- 'activation_preprocess_type': None,
- # weight quantize type, default is 'channel_wise_abs_max'
- 'weight_quantize_type': 'channel_wise_abs_max',
- # activation quantize type, default is 'moving_average_abs_max'
- 'activation_quantize_type': 'moving_average_abs_max',
- # weight quantize bit num, default is 8
- 'weight_bits': 8,
- # activation quantize bit num, default is 8
- 'activation_bits': 8,
- # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
- 'dtype': 'int8',
- # window size for 'range_abs_max' quantization. default is 10000
- 'window_size': 10000,
- # The decay coefficient of moving average, default is 0.9
- 'moving_rate': 0.9,
- # for dygraph quantization, layers of type in quantizable_layer_type will be quantized
- 'quantizable_layer_type': ['Conv2D', 'Linear'],
- }
- FLAGS = ArgsParser().parse_args()
- config = load_config(FLAGS.config)
- config = merge_config(config, FLAGS.opt)
- logger = get_logger()
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- config['Global'])
- # build model
- if hasattr(post_process_class, 'character'):
- char_num = len(getattr(post_process_class, 'character'))
- if config['Architecture']["algorithm"] in ["Distillation",
- ]: # distillation model
- for key in config['Architecture']["Models"]:
- if config['Architecture']['Models'][key]['Head'][
- 'name'] == 'MultiHead': # for multi head
- if config['PostProcess'][
- 'name'] == 'DistillationSARLabelDecode':
- char_num = char_num - 2
- # update SARLoss params
- assert list(config['Loss']['loss_config_list'][-1].keys())[
- 0] == 'DistillationSARLoss'
- config['Loss']['loss_config_list'][-1][
- 'DistillationSARLoss']['ignore_index'] = char_num + 1
- out_channels_list = {}
- out_channels_list['CTCLabelDecode'] = char_num
- out_channels_list['SARLabelDecode'] = char_num + 2
- config['Architecture']['Models'][key]['Head'][
- 'out_channels_list'] = out_channels_list
- else:
- config['Architecture']["Models"][key]["Head"][
- 'out_channels'] = char_num
- elif config['Architecture']['Head'][
- 'name'] == 'MultiHead': # for multi head
- if config['PostProcess']['name'] == 'SARLabelDecode':
- char_num = char_num - 2
- # update SARLoss params
- assert list(config['Loss']['loss_config_list'][1].keys())[
- 0] == 'SARLoss'
- if config['Loss']['loss_config_list'][1]['SARLoss'] is None:
- config['Loss']['loss_config_list'][1]['SARLoss'] = {
- 'ignore_index': char_num + 1
- }
- else:
- config['Loss']['loss_config_list'][1]['SARLoss'][
- 'ignore_index'] = char_num + 1
- out_channels_list = {}
- out_channels_list['CTCLabelDecode'] = char_num
- out_channels_list['SARLabelDecode'] = char_num + 2
- config['Architecture']['Head'][
- 'out_channels_list'] = out_channels_list
- else: # base rec model
- config['Architecture']["Head"]['out_channels'] = char_num
- if config['PostProcess']['name'] == 'SARLabelDecode': # for SAR model
- config['Loss']['ignore_index'] = char_num - 1
- model = build_model(config['Architecture'])
- # get QAT model
- quanter = QAT(config=quant_config)
- quanter.quantize(model)
- load_model(config, model)
- # build metric
- eval_class = build_metric(config['Metric'])
- # build dataloader
- valid_dataloader = build_dataloader(config, 'Eval', device, logger)
- use_srn = config['Architecture']['algorithm'] == "SRN"
- model_type = config['Architecture'].get('model_type', None)
- # start eval
- metric = program.eval(model, valid_dataloader, post_process_class,
- eval_class, model_type, use_srn)
- model.eval()
- logger.info('metric eval ***************')
- for k, v in metric.items():
- logger.info('{}:{}'.format(k, v))
- save_path = config["Global"]["save_inference_dir"]
- arch_config = config["Architecture"]
- if arch_config["algorithm"] == "SVTR" and arch_config["Head"][
- "name"] != 'MultiHead':
- input_shape = config["Eval"]["dataset"]["transforms"][-2][
- 'SVTRRecResizeImg']['image_shape']
- else:
- input_shape = None
- if arch_config["algorithm"] in ["Distillation", ]: # distillation model
- archs = list(arch_config["Models"].values())
- for idx, name in enumerate(model.model_name_list):
- sub_model_save_path = os.path.join(save_path, name, "inference")
- export_single_model(model.model_list[idx], archs[idx],
- sub_model_save_path, logger, input_shape,
- quanter)
- else:
- save_path = os.path.join(save_path, "inference")
- export_single_model(model, arch_config, save_path, logger, input_shape,
- quanter)
- if __name__ == "__main__":
- config, device, logger, vdl_writer = program.preprocess()
- main()
|