123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- from .det_basic_loss import DiceLoss
- class EASTLoss(nn.Layer):
- """
- """
- def __init__(self,
- eps=1e-6,
- **kwargs):
- super(EASTLoss, self).__init__()
- self.dice_loss = DiceLoss(eps=eps)
- def forward(self, predicts, labels):
- l_score, l_geo, l_mask = labels[1:]
- f_score = predicts['f_score']
- f_geo = predicts['f_geo']
- dice_loss = self.dice_loss(f_score, l_score, l_mask)
-
- channels = 8
- l_geo_split = paddle.split(
- l_geo, num_or_sections=channels + 1, axis=1)
- f_geo_split = paddle.split(f_geo, num_or_sections=channels, axis=1)
- smooth_l1 = 0
- for i in range(0, channels):
- geo_diff = l_geo_split[i] - f_geo_split[i]
- abs_geo_diff = paddle.abs(geo_diff)
- smooth_l1_sign = paddle.less_than(abs_geo_diff, l_score)
- smooth_l1_sign = paddle.cast(smooth_l1_sign, dtype='float32')
- in_loss = abs_geo_diff * abs_geo_diff * smooth_l1_sign + \
- (abs_geo_diff - 0.5) * (1.0 - smooth_l1_sign)
- out_loss = l_geo_split[-1] / channels * in_loss * l_score
- smooth_l1 += out_loss
- smooth_l1_loss = paddle.mean(smooth_l1 * l_score)
- dice_loss = dice_loss * 0.01
- total_loss = dice_loss + smooth_l1_loss
- losses = {"loss":total_loss, \
- "dice_loss":dice_loss,\
- "smooth_l1_loss":smooth_l1_loss}
- return losses
|