# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn import paddle.nn.functional as F from paddle import ParamAttr import os import sys import math from paddle.nn.initializer import TruncatedNormal, Constant, Normal ones_ = Constant(value=1.) zeros_ = Constant(value=0.) __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..'))) class Conv_BN_ReLU(nn.Layer): def __init__(self, in_planes, out_planes, kernel_size=1, stride=1, padding=0): super(Conv_BN_ReLU, self).__init__() self.conv = nn.Conv2D( in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias_attr=False) self.bn = nn.BatchNorm2D(out_planes) self.relu = nn.ReLU() for m in self.sublayers(): if isinstance(m, nn.Conv2D): n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels normal_ = Normal(mean=0.0, std=math.sqrt(2. / n)) normal_(m.weight) elif isinstance(m, nn.BatchNorm2D): zeros_(m.bias) ones_(m.weight) def forward(self, x): return self.relu(self.bn(self.conv(x))) class FPEM(nn.Layer): def __init__(self, in_channels, out_channels): super(FPEM, self).__init__() planes = out_channels self.dwconv3_1 = nn.Conv2D( planes, planes, kernel_size=3, stride=1, padding=1, groups=planes, bias_attr=False) self.smooth_layer3_1 = Conv_BN_ReLU(planes, planes) self.dwconv2_1 = nn.Conv2D( planes, planes, kernel_size=3, stride=1, padding=1, groups=planes, bias_attr=False) self.smooth_layer2_1 = Conv_BN_ReLU(planes, planes) self.dwconv1_1 = nn.Conv2D( planes, planes, kernel_size=3, stride=1, padding=1, groups=planes, bias_attr=False) self.smooth_layer1_1 = Conv_BN_ReLU(planes, planes) self.dwconv2_2 = nn.Conv2D( planes, planes, kernel_size=3, stride=2, padding=1, groups=planes, bias_attr=False) self.smooth_layer2_2 = Conv_BN_ReLU(planes, planes) self.dwconv3_2 = nn.Conv2D( planes, planes, kernel_size=3, stride=2, padding=1, groups=planes, bias_attr=False) self.smooth_layer3_2 = Conv_BN_ReLU(planes, planes) self.dwconv4_2 = nn.Conv2D( planes, planes, kernel_size=3, stride=2, padding=1, groups=planes, bias_attr=False) self.smooth_layer4_2 = Conv_BN_ReLU(planes, planes) def _upsample_add(self, x, y): return F.upsample(x, scale_factor=2, mode='bilinear') + y def forward(self, f1, f2, f3, f4): # up-down f3 = self.smooth_layer3_1(self.dwconv3_1(self._upsample_add(f4, f3))) f2 = self.smooth_layer2_1(self.dwconv2_1(self._upsample_add(f3, f2))) f1 = self.smooth_layer1_1(self.dwconv1_1(self._upsample_add(f2, f1))) # down-up f2 = self.smooth_layer2_2(self.dwconv2_2(self._upsample_add(f2, f1))) f3 = self.smooth_layer3_2(self.dwconv3_2(self._upsample_add(f3, f2))) f4 = self.smooth_layer4_2(self.dwconv4_2(self._upsample_add(f4, f3))) return f1, f2, f3, f4 class CTFPN(nn.Layer): def __init__(self, in_channels, out_channel=128): super(CTFPN, self).__init__() self.out_channels = out_channel * 4 self.reduce_layer1 = Conv_BN_ReLU(in_channels[0], 128) self.reduce_layer2 = Conv_BN_ReLU(in_channels[1], 128) self.reduce_layer3 = Conv_BN_ReLU(in_channels[2], 128) self.reduce_layer4 = Conv_BN_ReLU(in_channels[3], 128) self.fpem1 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128) self.fpem2 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128) def _upsample(self, x, scale=1): return F.upsample(x, scale_factor=scale, mode='bilinear') def forward(self, f): # # reduce channel f1 = self.reduce_layer1(f[0]) # N,64,160,160 --> N, 128, 160, 160 f2 = self.reduce_layer2(f[1]) # N, 128, 80, 80 --> N, 128, 80, 80 f3 = self.reduce_layer3(f[2]) # N, 256, 40, 40 --> N, 128, 40, 40 f4 = self.reduce_layer4(f[3]) # N, 512, 20, 20 --> N, 128, 20, 20 # FPEM f1_1, f2_1, f3_1, f4_1 = self.fpem1(f1, f2, f3, f4) f1_2, f2_2, f3_2, f4_2 = self.fpem2(f1_1, f2_1, f3_1, f4_1) # FFM f1 = f1_1 + f1_2 f2 = f2_1 + f2_2 f3 = f3_1 + f3_2 f4 = f4_1 + f4_2 f2 = self._upsample(f2, scale=2) f3 = self._upsample(f3, scale=4) f4 = self._upsample(f4, scale=8) ff = paddle.concat((f1, f2, f3, f4), 1) # N,512, 160,160 return ff