# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn import paddle.nn.functional as F from paddle import ParamAttr class ConvBNLayer(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, if_act=True, act=None, name=None): super(ConvBNLayer, self).__init__() self.if_act = if_act self.act = act self.conv = nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=groups, weight_attr=ParamAttr(name=name + '_weights'), bias_attr=False) self.bn = nn.BatchNorm( num_channels=out_channels, act=act, param_attr=ParamAttr(name="bn_" + name + "_scale"), bias_attr=ParamAttr(name="bn_" + name + "_offset"), moving_mean_name="bn_" + name + "_mean", moving_variance_name="bn_" + name + "_variance") def forward(self, x): x = self.conv(x) x = self.bn(x) return x class DeConvBNLayer(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, if_act=True, act=None, name=None): super(DeConvBNLayer, self).__init__() self.if_act = if_act self.act = act self.deconv = nn.Conv2DTranspose( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=groups, weight_attr=ParamAttr(name=name + '_weights'), bias_attr=False) self.bn = nn.BatchNorm( num_channels=out_channels, act=act, param_attr=ParamAttr(name="bn_" + name + "_scale"), bias_attr=ParamAttr(name="bn_" + name + "_offset"), moving_mean_name="bn_" + name + "_mean", moving_variance_name="bn_" + name + "_variance") def forward(self, x): x = self.deconv(x) x = self.bn(x) return x class FPN_Up_Fusion(nn.Layer): def __init__(self, in_channels): super(FPN_Up_Fusion, self).__init__() in_channels = in_channels[::-1] out_channels = [256, 256, 192, 192, 128] self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 1, 1, act=None, name='fpn_up_h0') self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 1, 1, act=None, name='fpn_up_h1') self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 1, 1, act=None, name='fpn_up_h2') self.h3_conv = ConvBNLayer(in_channels[3], out_channels[3], 1, 1, act=None, name='fpn_up_h3') self.h4_conv = ConvBNLayer(in_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_h4') self.g0_conv = DeConvBNLayer(out_channels[0], out_channels[1], 4, 2, act=None, name='fpn_up_g0') self.g1_conv = nn.Sequential( ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_up_g1_1'), DeConvBNLayer(out_channels[1], out_channels[2], 4, 2, act=None, name='fpn_up_g1_2') ) self.g2_conv = nn.Sequential( ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_up_g2_1'), DeConvBNLayer(out_channels[2], out_channels[3], 4, 2, act=None, name='fpn_up_g2_2') ) self.g3_conv = nn.Sequential( ConvBNLayer(out_channels[3], out_channels[3], 3, 1, act='relu', name='fpn_up_g3_1'), DeConvBNLayer(out_channels[3], out_channels[4], 4, 2, act=None, name='fpn_up_g3_2') ) self.g4_conv = nn.Sequential( ConvBNLayer(out_channels[4], out_channels[4], 3, 1, act='relu', name='fpn_up_fusion_1'), ConvBNLayer(out_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_fusion_2') ) def _add_relu(self, x1, x2): x = paddle.add(x=x1, y=x2) x = F.relu(x) return x def forward(self, x): f = x[2:][::-1] h0 = self.h0_conv(f[0]) h1 = self.h1_conv(f[1]) h2 = self.h2_conv(f[2]) h3 = self.h3_conv(f[3]) h4 = self.h4_conv(f[4]) g0 = self.g0_conv(h0) g1 = self._add_relu(g0, h1) g1 = self.g1_conv(g1) g2 = self.g2_conv(self._add_relu(g1, h2)) g3 = self.g3_conv(self._add_relu(g2, h3)) g4 = self.g4_conv(self._add_relu(g3, h4)) return g4 class FPN_Down_Fusion(nn.Layer): def __init__(self, in_channels): super(FPN_Down_Fusion, self).__init__() out_channels = [32, 64, 128] self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 3, 1, act=None, name='fpn_down_h0') self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 3, 1, act=None, name='fpn_down_h1') self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 3, 1, act=None, name='fpn_down_h2') self.g0_conv = ConvBNLayer(out_channels[0], out_channels[1], 3, 2, act=None, name='fpn_down_g0') self.g1_conv = nn.Sequential( ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_down_g1_1'), ConvBNLayer(out_channels[1], out_channels[2], 3, 2, act=None, name='fpn_down_g1_2') ) self.g2_conv = nn.Sequential( ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_down_fusion_1'), ConvBNLayer(out_channels[2], out_channels[2], 1, 1, act=None, name='fpn_down_fusion_2') ) def forward(self, x): f = x[:3] h0 = self.h0_conv(f[0]) h1 = self.h1_conv(f[1]) h2 = self.h2_conv(f[2]) g0 = self.g0_conv(h0) g1 = paddle.add(x=g0, y=h1) g1 = F.relu(g1) g1 = self.g1_conv(g1) g2 = paddle.add(x=g1, y=h2) g2 = F.relu(g2) g2 = self.g2_conv(g2) return g2 class Cross_Attention(nn.Layer): def __init__(self, in_channels): super(Cross_Attention, self).__init__() self.theta_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_theta') self.phi_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_phi') self.g_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_g') self.fh_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_weight') self.fh_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_sc') self.fv_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_weight') self.fv_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_sc') self.f_attn_conv = ConvBNLayer(in_channels * 2, in_channels, 1, 1, act='relu', name='f_attn') def _cal_fweight(self, f, shape): f_theta, f_phi, f_g = f #flatten f_theta = paddle.transpose(f_theta, [0, 2, 3, 1]) f_theta = paddle.reshape(f_theta, [shape[0] * shape[1], shape[2], 128]) f_phi = paddle.transpose(f_phi, [0, 2, 3, 1]) f_phi = paddle.reshape(f_phi, [shape[0] * shape[1], shape[2], 128]) f_g = paddle.transpose(f_g, [0, 2, 3, 1]) f_g = paddle.reshape(f_g, [shape[0] * shape[1], shape[2], 128]) #correlation f_attn = paddle.matmul(f_theta, paddle.transpose(f_phi, [0, 2, 1])) #scale f_attn = f_attn / (128**0.5) f_attn = F.softmax(f_attn) #weighted sum f_weight = paddle.matmul(f_attn, f_g) f_weight = paddle.reshape( f_weight, [shape[0], shape[1], shape[2], 128]) return f_weight def forward(self, f_common): f_shape = paddle.shape(f_common) # print('f_shape: ', f_shape) f_theta = self.theta_conv(f_common) f_phi = self.phi_conv(f_common) f_g = self.g_conv(f_common) ######## horizon ######## fh_weight = self._cal_fweight([f_theta, f_phi, f_g], [f_shape[0], f_shape[2], f_shape[3]]) fh_weight = paddle.transpose(fh_weight, [0, 3, 1, 2]) fh_weight = self.fh_weight_conv(fh_weight) #short cut fh_sc = self.fh_sc_conv(f_common) f_h = F.relu(fh_weight + fh_sc) ######## vertical ######## fv_theta = paddle.transpose(f_theta, [0, 1, 3, 2]) fv_phi = paddle.transpose(f_phi, [0, 1, 3, 2]) fv_g = paddle.transpose(f_g, [0, 1, 3, 2]) fv_weight = self._cal_fweight([fv_theta, fv_phi, fv_g], [f_shape[0], f_shape[3], f_shape[2]]) fv_weight = paddle.transpose(fv_weight, [0, 3, 2, 1]) fv_weight = self.fv_weight_conv(fv_weight) #short cut fv_sc = self.fv_sc_conv(f_common) f_v = F.relu(fv_weight + fv_sc) ######## merge ######## f_attn = paddle.concat([f_h, f_v], axis=1) f_attn = self.f_attn_conv(f_attn) return f_attn class SASTFPN(nn.Layer): def __init__(self, in_channels, with_cab=False, **kwargs): super(SASTFPN, self).__init__() self.in_channels = in_channels self.with_cab = with_cab self.FPN_Down_Fusion = FPN_Down_Fusion(self.in_channels) self.FPN_Up_Fusion = FPN_Up_Fusion(self.in_channels) self.out_channels = 128 self.cross_attention = Cross_Attention(self.out_channels) def forward(self, x): #down fpn f_down = self.FPN_Down_Fusion(x) #up fpn f_up = self.FPN_Up_Fusion(x) #fusion f_common = paddle.add(x=f_down, y=f_up) f_common = F.relu(f_common) if self.with_cab: # print('enhence f_common with CAB.') f_common = self.cross_attention(f_common) return f_common