# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/hikopensource/DAVAR-Lab-OCR/blob/main/davarocr/davar_rcg/models/backbones/ResNetRFL.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from paddle.nn.initializer import TruncatedNormal, Constant, Normal, KaimingNormal kaiming_init_ = KaimingNormal() zeros_ = Constant(value=0.) ones_ = Constant(value=1.) class BasicBlock(nn.Layer): """Res-net Basic Block""" expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, norm_type='BN', **kwargs): """ Args: inplanes (int): input channel planes (int): channels of the middle feature stride (int): stride of the convolution downsample (int): type of the down_sample norm_type (str): type of the normalization **kwargs (None): backup parameter """ super(BasicBlock, self).__init__() self.conv1 = self._conv3x3(inplanes, planes) self.bn1 = nn.BatchNorm(planes) self.conv2 = self._conv3x3(planes, planes) self.bn2 = nn.BatchNorm(planes) self.relu = nn.ReLU() self.downsample = downsample self.stride = stride def _conv3x3(self, in_planes, out_planes, stride=1): return nn.Conv2D( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias_attr=False) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNetRFL(nn.Layer): def __init__(self, in_channels, out_channels=512, use_cnt=True, use_seq=True): """ Args: in_channels (int): input channel out_channels (int): output channel """ super(ResNetRFL, self).__init__() assert use_cnt or use_seq self.use_cnt, self.use_seq = use_cnt, use_seq self.backbone = RFLBase(in_channels) self.out_channels = out_channels self.out_channels_block = [ int(self.out_channels / 4), int(self.out_channels / 2), self.out_channels, self.out_channels ] block = BasicBlock layers = [1, 2, 5, 3] self.inplanes = int(self.out_channels // 2) self.relu = nn.ReLU() if self.use_seq: self.maxpool3 = nn.MaxPool2D( kernel_size=2, stride=(2, 1), padding=(0, 1)) self.layer3 = self._make_layer( block, self.out_channels_block[2], layers[2], stride=1) self.conv3 = nn.Conv2D( self.out_channels_block[2], self.out_channels_block[2], kernel_size=3, stride=1, padding=1, bias_attr=False) self.bn3 = nn.BatchNorm(self.out_channels_block[2]) self.layer4 = self._make_layer( block, self.out_channels_block[3], layers[3], stride=1) self.conv4_1 = nn.Conv2D( self.out_channels_block[3], self.out_channels_block[3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias_attr=False) self.bn4_1 = nn.BatchNorm(self.out_channels_block[3]) self.conv4_2 = nn.Conv2D( self.out_channels_block[3], self.out_channels_block[3], kernel_size=2, stride=1, padding=0, bias_attr=False) self.bn4_2 = nn.BatchNorm(self.out_channels_block[3]) if self.use_cnt: self.inplanes = int(self.out_channels // 2) self.v_maxpool3 = nn.MaxPool2D( kernel_size=2, stride=(2, 1), padding=(0, 1)) self.v_layer3 = self._make_layer( block, self.out_channels_block[2], layers[2], stride=1) self.v_conv3 = nn.Conv2D( self.out_channels_block[2], self.out_channels_block[2], kernel_size=3, stride=1, padding=1, bias_attr=False) self.v_bn3 = nn.BatchNorm(self.out_channels_block[2]) self.v_layer4 = self._make_layer( block, self.out_channels_block[3], layers[3], stride=1) self.v_conv4_1 = nn.Conv2D( self.out_channels_block[3], self.out_channels_block[3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias_attr=False) self.v_bn4_1 = nn.BatchNorm(self.out_channels_block[3]) self.v_conv4_2 = nn.Conv2D( self.out_channels_block[3], self.out_channels_block[3], kernel_size=2, stride=1, padding=0, bias_attr=False) self.v_bn4_2 = nn.BatchNorm(self.out_channels_block[3]) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias_attr=False), nn.BatchNorm(planes * block.expansion), ) layers = list() layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, inputs): x_1 = self.backbone(inputs) if self.use_cnt: v_x = self.v_maxpool3(x_1) v_x = self.v_layer3(v_x) v_x = self.v_conv3(v_x) v_x = self.v_bn3(v_x) visual_feature_2 = self.relu(v_x) v_x = self.v_layer4(visual_feature_2) v_x = self.v_conv4_1(v_x) v_x = self.v_bn4_1(v_x) v_x = self.relu(v_x) v_x = self.v_conv4_2(v_x) v_x = self.v_bn4_2(v_x) visual_feature_3 = self.relu(v_x) else: visual_feature_3 = None if self.use_seq: x = self.maxpool3(x_1) x = self.layer3(x) x = self.conv3(x) x = self.bn3(x) x_2 = self.relu(x) x = self.layer4(x_2) x = self.conv4_1(x) x = self.bn4_1(x) x = self.relu(x) x = self.conv4_2(x) x = self.bn4_2(x) x_3 = self.relu(x) else: x_3 = None return [visual_feature_3, x_3] class ResNetBase(nn.Layer): def __init__(self, in_channels, out_channels, block, layers): super(ResNetBase, self).__init__() self.out_channels_block = [ int(out_channels / 4), int(out_channels / 2), out_channels, out_channels ] self.inplanes = int(out_channels / 8) self.conv0_1 = nn.Conv2D( in_channels, int(out_channels / 16), kernel_size=3, stride=1, padding=1, bias_attr=False) self.bn0_1 = nn.BatchNorm(int(out_channels / 16)) self.conv0_2 = nn.Conv2D( int(out_channels / 16), self.inplanes, kernel_size=3, stride=1, padding=1, bias_attr=False) self.bn0_2 = nn.BatchNorm(self.inplanes) self.relu = nn.ReLU() self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) self.layer1 = self._make_layer(block, self.out_channels_block[0], layers[0]) self.conv1 = nn.Conv2D( self.out_channels_block[0], self.out_channels_block[0], kernel_size=3, stride=1, padding=1, bias_attr=False) self.bn1 = nn.BatchNorm(self.out_channels_block[0]) self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) self.layer2 = self._make_layer( block, self.out_channels_block[1], layers[1], stride=1) self.conv2 = nn.Conv2D( self.out_channels_block[1], self.out_channels_block[1], kernel_size=3, stride=1, padding=1, bias_attr=False) self.bn2 = nn.BatchNorm(self.out_channels_block[1]) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias_attr=False), nn.BatchNorm(planes * block.expansion), ) layers = list() layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv0_1(x) x = self.bn0_1(x) x = self.relu(x) x = self.conv0_2(x) x = self.bn0_2(x) x = self.relu(x) x = self.maxpool1(x) x = self.layer1(x) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool2(x) x = self.layer2(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) return x class RFLBase(nn.Layer): """ Reciprocal feature learning share backbone network""" def __init__(self, in_channels, out_channels=512): super(RFLBase, self).__init__() self.ConvNet = ResNetBase(in_channels, out_channels, BasicBlock, [1, 2, 5, 3]) def forward(self, inputs): return self.ConvNet(inputs)