# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import random
import pyclipper
import paddle

import numpy as np
import Polygon as plg
import scipy.io as scio

from PIL import Image
import paddle.vision.transforms as transforms


class RandomScale():
    def __init__(self, short_size=640, **kwargs):
        self.short_size = short_size

    def scale_aligned(self, img, scale):
        oh, ow = img.shape[0:2]
        h = int(oh * scale + 0.5)
        w = int(ow * scale + 0.5)
        if h % 32 != 0:
            h = h + (32 - h % 32)
        if w % 32 != 0:
            w = w + (32 - w % 32)
        img = cv2.resize(img, dsize=(w, h))
        factor_h = h / oh
        factor_w = w / ow
        return img, factor_h, factor_w

    def __call__(self, data):
        img = data['image']

        h, w = img.shape[0:2]
        random_scale = np.array([0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3])
        scale = (np.random.choice(random_scale) * self.short_size) / min(h, w)
        img, factor_h, factor_w = self.scale_aligned(img, scale)

        data['scale_factor'] = (factor_w, factor_h)
        data['image'] = img
        return data


class MakeShrink():
    def __init__(self, kernel_scale=0.7, **kwargs):
        self.kernel_scale = kernel_scale

    def dist(self, a, b):
        return np.linalg.norm((a - b), ord=2, axis=0)

    def perimeter(self, bbox):
        peri = 0.0
        for i in range(bbox.shape[0]):
            peri += self.dist(bbox[i], bbox[(i + 1) % bbox.shape[0]])
        return peri

    def shrink(self, bboxes, rate, max_shr=20):
        rate = rate * rate
        shrinked_bboxes = []
        for bbox in bboxes:
            area = plg.Polygon(bbox).area()
            peri = self.perimeter(bbox)

            try:
                pco = pyclipper.PyclipperOffset()
                pco.AddPath(bbox, pyclipper.JT_ROUND,
                            pyclipper.ET_CLOSEDPOLYGON)
                offset = min(
                    int(area * (1 - rate) / (peri + 0.001) + 0.5), max_shr)

                shrinked_bbox = pco.Execute(-offset)
                if len(shrinked_bbox) == 0:
                    shrinked_bboxes.append(bbox)
                    continue

                shrinked_bbox = np.array(shrinked_bbox[0])
                if shrinked_bbox.shape[0] <= 2:
                    shrinked_bboxes.append(bbox)
                    continue

                shrinked_bboxes.append(shrinked_bbox)
            except Exception as e:
                shrinked_bboxes.append(bbox)

        return shrinked_bboxes

    def __call__(self, data):
        img = data['image']
        bboxes = data['polys']
        words = data['texts']
        scale_factor = data['scale_factor']

        gt_instance = np.zeros(img.shape[0:2], dtype='uint8')  # h,w
        training_mask = np.ones(img.shape[0:2], dtype='uint8')
        training_mask_distance = np.ones(img.shape[0:2], dtype='uint8')

        for i in range(len(bboxes)):
            bboxes[i] = np.reshape(bboxes[i] * (
                [scale_factor[0], scale_factor[1]] * (bboxes[i].shape[0] // 2)),
                                   (bboxes[i].shape[0] // 2, 2)).astype('int32')

        for i in range(len(bboxes)):
            #different value for different bbox
            cv2.drawContours(gt_instance, [bboxes[i]], -1, i + 1, -1)

            # set training mask to 0
            cv2.drawContours(training_mask, [bboxes[i]], -1, 0, -1)

            # for not accurate annotation, use training_mask_distance
            if words[i] == '###' or words[i] == '???':
                cv2.drawContours(training_mask_distance, [bboxes[i]], -1, 0, -1)

        # make shrink
        gt_kernel_instance = np.zeros(img.shape[0:2], dtype='uint8')
        kernel_bboxes = self.shrink(bboxes, self.kernel_scale)
        for i in range(len(bboxes)):
            cv2.drawContours(gt_kernel_instance, [kernel_bboxes[i]], -1, i + 1,
                             -1)

            # for training mask, kernel and background= 1, box region=0
            if words[i] != '###' and words[i] != '???':
                cv2.drawContours(training_mask, [kernel_bboxes[i]], -1, 1, -1)

        gt_kernel = gt_kernel_instance.copy()
        # for gt_kernel, kernel = 1
        gt_kernel[gt_kernel > 0] = 1

        # shrink 2 times
        tmp1 = gt_kernel_instance.copy()
        erode_kernel = np.ones((3, 3), np.uint8)
        tmp1 = cv2.erode(tmp1, erode_kernel, iterations=1)
        tmp2 = tmp1.copy()
        tmp2 = cv2.erode(tmp2, erode_kernel, iterations=1)

        # compute text region
        gt_kernel_inner = tmp1 - tmp2

        # gt_instance: text instance, bg=0, diff word use diff value
        # training_mask: text instance mask, word=0,kernel and bg=1
        # gt_kernel_instance: text kernel instance, bg=0, diff word use diff value
        # gt_kernel: text_kernel, bg=0,diff word use same value
        # gt_kernel_inner: text kernel reference
        # training_mask_distance: word without anno = 0, else 1

        data['image'] = [
            img, gt_instance, training_mask, gt_kernel_instance, gt_kernel,
            gt_kernel_inner, training_mask_distance
        ]
        return data


class GroupRandomHorizontalFlip():
    def __init__(self, p=0.5, **kwargs):
        self.p = p

    def __call__(self, data):
        imgs = data['image']

        if random.random() < self.p:
            for i in range(len(imgs)):
                imgs[i] = np.flip(imgs[i], axis=1).copy()
        data['image'] = imgs
        return data


class GroupRandomRotate():
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        imgs = data['image']

        max_angle = 10
        angle = random.random() * 2 * max_angle - max_angle
        for i in range(len(imgs)):
            img = imgs[i]
            w, h = img.shape[:2]
            rotation_matrix = cv2.getRotationMatrix2D((h / 2, w / 2), angle, 1)
            img_rotation = cv2.warpAffine(
                img, rotation_matrix, (h, w), flags=cv2.INTER_NEAREST)
            imgs[i] = img_rotation

        data['image'] = imgs
        return data


class GroupRandomCropPadding():
    def __init__(self, target_size=(640, 640), **kwargs):
        self.target_size = target_size

    def __call__(self, data):
        imgs = data['image']

        h, w = imgs[0].shape[0:2]
        t_w, t_h = self.target_size
        p_w, p_h = self.target_size
        if w == t_w and h == t_h:
            return data

        t_h = t_h if t_h < h else h
        t_w = t_w if t_w < w else w

        if random.random() > 3.0 / 8.0 and np.max(imgs[1]) > 0:
            # make sure to crop the text region
            tl = np.min(np.where(imgs[1] > 0), axis=1) - (t_h, t_w)
            tl[tl < 0] = 0
            br = np.max(np.where(imgs[1] > 0), axis=1) - (t_h, t_w)
            br[br < 0] = 0
            br[0] = min(br[0], h - t_h)
            br[1] = min(br[1], w - t_w)

            i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
            j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
        else:
            i = random.randint(0, h - t_h) if h - t_h > 0 else 0
            j = random.randint(0, w - t_w) if w - t_w > 0 else 0

        n_imgs = []
        for idx in range(len(imgs)):
            if len(imgs[idx].shape) == 3:
                s3_length = int(imgs[idx].shape[-1])
                img = imgs[idx][i:i + t_h, j:j + t_w, :]
                img_p = cv2.copyMakeBorder(
                    img,
                    0,
                    p_h - t_h,
                    0,
                    p_w - t_w,
                    borderType=cv2.BORDER_CONSTANT,
                    value=tuple(0 for i in range(s3_length)))
            else:
                img = imgs[idx][i:i + t_h, j:j + t_w]
                img_p = cv2.copyMakeBorder(
                    img,
                    0,
                    p_h - t_h,
                    0,
                    p_w - t_w,
                    borderType=cv2.BORDER_CONSTANT,
                    value=(0, ))
            n_imgs.append(img_p)

        data['image'] = n_imgs
        return data


class MakeCentripetalShift():
    def __init__(self, **kwargs):
        pass

    def jaccard(self, As, Bs):
        A = As.shape[0]  # small
        B = Bs.shape[0]  # large

        dis = np.sqrt(
            np.sum((As[:, np.newaxis, :].repeat(
                B, axis=1) - Bs[np.newaxis, :, :].repeat(
                    A, axis=0))**2,
                   axis=-1))

        ind = np.argmin(dis, axis=-1)

        return ind

    def __call__(self, data):
        imgs = data['image']

        img, gt_instance, training_mask, gt_kernel_instance, gt_kernel, gt_kernel_inner, training_mask_distance = \
                        imgs[0], imgs[1], imgs[2], imgs[3], imgs[4], imgs[5], imgs[6]

        max_instance = np.max(gt_instance)  # num bbox

        # make centripetal shift
        gt_distance = np.zeros((2, *img.shape[0:2]), dtype=np.float32)
        for i in range(1, max_instance + 1):
            # kernel_reference
            ind = (gt_kernel_inner == i)

            if np.sum(ind) == 0:
                training_mask[gt_instance == i] = 0
                training_mask_distance[gt_instance == i] = 0
                continue

            kpoints = np.array(np.where(ind)).transpose(
                (1, 0))[:, ::-1].astype('float32')

            ind = (gt_instance == i) * (gt_kernel_instance == 0)
            if np.sum(ind) == 0:
                continue
            pixels = np.where(ind)

            points = np.array(pixels).transpose(
                (1, 0))[:, ::-1].astype('float32')

            bbox_ind = self.jaccard(points, kpoints)

            offset_gt = kpoints[bbox_ind] - points

            gt_distance[:, pixels[0], pixels[1]] = offset_gt.T * 0.1

        img = Image.fromarray(img)
        img = img.convert('RGB')

        data["image"] = img
        data["gt_kernel"] = gt_kernel.astype("int64")
        data["training_mask"] = training_mask.astype("int64")
        data["gt_instance"] = gt_instance.astype("int64")
        data["gt_kernel_instance"] = gt_kernel_instance.astype("int64")
        data["training_mask_distance"] = training_mask_distance.astype("int64")
        data["gt_distance"] = gt_distance.astype("float32")

        return data


class ScaleAlignedShort():
    def __init__(self, short_size=640, **kwargs):
        self.short_size = short_size

    def __call__(self, data):
        img = data['image']

        org_img_shape = img.shape

        h, w = img.shape[0:2]
        scale = self.short_size * 1.0 / min(h, w)
        h = int(h * scale + 0.5)
        w = int(w * scale + 0.5)
        if h % 32 != 0:
            h = h + (32 - h % 32)
        if w % 32 != 0:
            w = w + (32 - w % 32)
        img = cv2.resize(img, dsize=(w, h))

        new_img_shape = img.shape
        img_shape = np.array(org_img_shape + new_img_shape)

        data['shape'] = img_shape
        data['image'] = img

        return data